Skip to main content
Log in

Science and technology of atmospheric effects on optical engineering: Progress in 3rd quinquennium of 21st century

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Brief introduction with remarks is given for recent work in optical properties of turbulent and turbid atmospheres and their effects on optical engineering. Emphasis about turbulence investigation is paid on spatial structure characteristics of optical turbulence, turbulence profiling with lidar technology, and turbulence prediction based on mesoscale atmospheric model. Discussion of turbid atmosphere study is focused on light scattering by non-spherical aerosol particles, high resolution atmospheric transmittance from solar radiation measurement, total sky imaging with high spectral resolution, and the modulation transfer function of a turbid medium. Key points about light propagation through turbulence include non-Kolmogorov turbulence effects, probability distribution models of scintillation, and combined beam propagation. Atmospheric effects on quantum communication are discussed, and statistical characteristics of atmospheric effects on optical engineering are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao R. Modern Atmospheric Optics. Beijing: Science Press, 2012

    Google Scholar 

  2. Goody R M, Yung Y L. Atmospheric Radiation-theoretical Basis. New York: Oxford University Press, 1989

    Google Scholar 

  3. van de Hulst H C. Light Scattering by Small Particles. New York: John Wiley, 1957

    Google Scholar 

  4. Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. New York: John Wiley, 1983

    Google Scholar 

  5. Liou K N. An introduction to Atmospheric Radiation. New York: Academic Press, 1992

    Google Scholar 

  6. Thomas G E, Stamnes K. Radiative Transfer in the Atmosphere and Ocean. New York: Cambridge University Press, 1999

    Book  MATH  Google Scholar 

  7. Tatarskii V I. Wave Propagation in a Turbulent Medium. New York: McGraw-Hall, 1961

    Google Scholar 

  8. Strohbehn J W. Laser Beam Propagation in the Atmosphere. Berlin: Springer-Verlag, 1978

    Book  Google Scholar 

  9. Sasiela R J. Electromagnetic Wave Propagation in Turbulence. Berlin: Springer-Verlag, 1994

    Book  MATH  Google Scholar 

  10. Andrews L C, Phillips R L. Laser Beam Propagation through Random Media. Bellingham: SPIE Press, 1998

    Google Scholar 

  11. Andrews L C, Phillips R L. Laser Beam Scintillation with Applications. Bellingham: SPIE Press, 2001

    Book  Google Scholar 

  12. Wiscombe W J. Improved Mie scattering algorithms. Appl Opt, 1980, 19: 1505–1509

    Article  Google Scholar 

  13. Berk A, Anderson G P, Acharya P K, et al. MODTRAN5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update. Proc SPIE, 2005, 5806: 662–667

    Article  Google Scholar 

  14. Stamnes K, Tsay S C, Jayaweera K, et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Opt, 1988, 27: 2502–2509

    Article  Google Scholar 

  15. Wei H, Chen X, Rao R. Introduction to the combined atmospheric radiative transfer software CART. J Atmos Environ Opt, 2007, 2: 446–450

    Google Scholar 

  16. Wei H, Chen X, Rao R, et al. A moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation. Opt Express, 2007, 15: 8360–8370

    Article  Google Scholar 

  17. NOAA, NASA, United States Air Force. U.S. Standard atmosphere. Washington, DC: US Government Printing Office, 1976

    Google Scholar 

  18. Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: The software package OPAC. Bull Amer Meteor Soc, 1998, 79: 831–844

    Article  Google Scholar 

  19. Good R E, Beland R R, Murphy E A, et al. Atmospheric models of optical turbulence. Proc SPIE, 1988, 928: 165–186

    Article  Google Scholar 

  20. Rao R, Qiao Y, Wei H, et al. Research and Application on optical properties of atmosphere in typical regions of China. J Atmos Environ Opt, 2007, 2: 401–408

    Google Scholar 

  21. Wu X, Huang Y, Mei H, et al. Measurement of non-Kolmogorov turbulence characteristic parameter in atmospheric surface layer (in Chinese). Acta Opt Sin, 2014, 34: 0601001

    Article  Google Scholar 

  22. Lukin V P, Nosov E V, Nosov V V, et al. Causes of non-Kolmogorov turbulence in the atmosphere. Appl Opt, 2016, 55: B163

    Article  Google Scholar 

  23. Rao R. Optical properties of atmospheric turbulence and their effects on light propagation. Proc SPIE, 2005, 5832: 1–11

    Google Scholar 

  24. Li Y, Zhu W, Wu X, et al. Equivalent refractive-index structure constant of non-Kolmogorov turbulence. Opt Express, 2015, 23: 23004–23012

    Article  Google Scholar 

  25. Mei H, Li B, Huang H, et al. Piezoelectric optical fiber stretcher for application in an atmospheric optical turbulence sensor. Appl Opt, 2007, 46: 4371–4375

    Article  Google Scholar 

  26. Wang Q, Mei H, Qian X, et al. Spatial correlation experimental analysis of atmospheric optical turbulence in the near ground layer. Acta Phys Sin, 2015, 64: 114212

    Google Scholar 

  27. Wang Q, Mei H, Qian X, et al. Experimental investigation of the outer scale in atmospheric optical turbulence near the ground. Acta Phys Sin, 2015, 64: 224216

    Google Scholar 

  28. Wang Q, Mei H, Li Y, et al. Experimental investigation of open sea atmospheric optical turbulence. Acta Phys Sin, 2016, 65: 074206

    Google Scholar 

  29. Chabé J, Blary F, Ziad A, et al. Optical turbulence in confined media: Part I, the indoor turbulence sensor instrument. Appl Opt, 2016, 55: 7068–7077

    Article  Google Scholar 

  30. Feneyrou P, Lehureau J C, Barny H. Performance evaluation for longrange turbulence-detection using ultraviolet lidar. Appl Opt, 2009, 48: 3750

    Article  Google Scholar 

  31. Hauchecorne A, Cot C, Dalaudier F, et al. Tentative detection of clearair turbulence using a ground-based Rayleigh lidar. Appl Opt, 2016, 55: 3420–3428

    Article  Google Scholar 

  32. Vrancken P, Wirth M, Ehret G, et al. Airborne forward-pointing UV Rayleigh lidar for remote clear air turbulence detection: System design and performance. Appl Opt, 2016, 55: 9314–9328

    Article  Google Scholar 

  33. Johnston R A, Dainty C, Wooder N J, et al. Generalized scintillation detection and ranging results obtained by use of a modified inversion technique. Appl Opt, 2002, 41: 6768–6772

    Article  Google Scholar 

  34. Garnier D, Coburn D, Dainty J C. Single star SCIDAR for Cn2(h) profiling. Proc SPIE, 2005, 5891: 20–26

    Google Scholar 

  35. Huang H, Cui C, Zhu W, et al. Measuring atmospheric turbulence strength based on differential imaging of light column. Chin Opt Lett, 2013, 11: 120101–120105

    Article  Google Scholar 

  36. Jing X, Hou Z, Wu Y, et al. Development of a differential column image motion light detection and ranging for measuring turbulence profiles. Opt Lett, 2013, 38: 3445–3447

    Article  Google Scholar 

  37. Beleri’kii M S. Effect of residual turbulent scintillation and a remotesensing technique for simultaneous determination of turbulence and scattering parameters of the atmosphere. J Opt Soc Am A, 1994, 11: 1150–1158

    Article  Google Scholar 

  38. Cui C, Huang H, et al. Study on acquiring turbulence information using Mie scattering lidar. J Atmos Environ Opt, 2011, 6: 89–94

    Google Scholar 

  39. Zhao Q, Cui C, Huang H, et al. Light scintillation effect on doublepass path of lidar (in Chinese). Acta Opt Sin, 2016, 36: 1026011

    Article  Google Scholar 

  40. Cui C, Huang H, Mei H, et al. Turbulent scintillation lidar for acquiring atmospheric turbulence information (in Chinese). High Power Laser Part Beams, 2013, 25: 1091–1096

    Article  Google Scholar 

  41. Cherubini T, Businger S, Lyman R, et al. Modeling optical turbulence and seeing over Mauna Kea. J Appl Meteor Climatol, 2008, 47: 1140–1155

    Article  Google Scholar 

  42. Qing C, Wu X, Li X, et al. Estimation of atmospheric optical turbulence profile by WRF Model at Gaomeigu. Chin J Laser, 2015, 42: 0913001

    Article  Google Scholar 

  43. Qing C, Wu X, Li X, et al. Use of weather research and forecasting model outputs to obtain near-surface refractive index structure constant over the ocean. Opt Express, 2016, 24: 13303–13315

    Article  Google Scholar 

  44. Qing C, Wu X, Huang H, et al. Estimating the surface layer refractive index structure constant over snow and sea ice using Monin-Obukhov similarity theory with a mesoscale atmospheric model. Opt Express, 2016, 24: 20424–20436

    Article  Google Scholar 

  45. Qing C, Wu X, Li X, et al. Research on simulating atmospheric optical turbulence in typical area (in Chinese). Acta Opt Sin, 2016, 36: 0501001

    Article  Google Scholar 

  46. Chen X, Li X, Sun G, et al. Analysis of an optical turbulence profile using complete ensemble empirical mode decomposition. Appl Opt, 2016, 55: 9932–9938

    Article  Google Scholar 

  47. Kokhanovsky A A. Light Scattering Reviews. Chichester: Praxis Publishing, 2006

    Book  Google Scholar 

  48. Barber P W, Hill S C. Light Scattering by Particles: Computational Methods. Singapore: World Scientific, 1990

    Book  Google Scholar 

  49. Mishchenko M I, Travis L D, Lacis A A. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge: Cambridge University Press, 2002

    Google Scholar 

  50. Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A, 1994, 11: 1491–1499

    Article  Google Scholar 

  51. Zhang X, Huang Y, Rao R. Equivalence of light scattering by one internal-mixed model for aerosol particles (in Chinese). Acta Opt Sin, 2012, 32: 0629001

    Article  Google Scholar 

  52. Zhang X, Huang Y, Rao R. Orientation-averaged optical properties of natural aerosol aggregates (in Chinese). High Power Laser Part Beams, 2012, 24: 2442–2446

    Google Scholar 

  53. Zhang X, Huang Y, Rao R. Numerical analysis of scattering phase function for natural aerosol aggregates (in Chinese). High Power Laser Part Beams, 2013, 25: 1675–1679

    Article  Google Scholar 

  54. Zhang X, Huang Y, Rao R. Light scattering analysis of an asymmetrical two-component aerosol particle model (in Chinese). Acta Opt Sin, 2013, 33: 1101001

    Article  Google Scholar 

  55. Zhang X, Huang Y, Rao R. Validity of effective medium theory in light scattering of compact internal-mixed particles. Infrared Laser Eng, 2014, 43: 1477–1483

    Google Scholar 

  56. Weidmann D, Reburn W J, Smith K M. Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: Results and analysis. Appl Opt, 2007, 46: 7162–7171

    Article  Google Scholar 

  57. Weidmann D, Wysocki G. High-resolution broadband (>100 cm−1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser. Opt Express, 2009, 17: 248–259

    Article  Google Scholar 

  58. Weidmann D, Tsai T, Macleod N A, et al. Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry. Opt Lett, 2011, 36: 1951–1953

    Article  Google Scholar 

  59. Tsai T R, Rose R A, Weidmann D, et al. Atmospheric vertical profiles of O3, N2O, CH4, CCl2F2, and H2O retrieved from external-cavity quantum-cascade laser heterodyne radiometer measurements. Appl Opt, 2012, 51: 8779–8792

    Article  Google Scholar 

  60. Wu Q, Huang Y, Tan T, et al. High-resolution atmospheric transmission measurement using a laser heterodyne radiometer. Spectrosc Spect Anal, 2017, 37

  61. Sun F, Mei H, Wu P, Rao R. Research on whole sky spectra imaging based on fiber spectrometer. Laser Optoelectron Prog, 2016, 53: 070104-1

    Article  Google Scholar 

  62. Fried D L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J Opt Soc Am, 1966, 56: 1372–1379

    Article  Google Scholar 

  63. Lutomirski R F. Atmospheric degradation of electrooptical system performance. Appl Opt, 1978, 17: 3915–3921

    Article  Google Scholar 

  64. Zardecki A, Gerstl S A W, Embury J F. Multiple scattering effects in spatial frequency filtering. Appl Opt, 1984, 23: 4124–4131

    Article  Google Scholar 

  65. Rao R. Equivalence of MTF of a turbid medium and radiative transfer field. Chin Opt Lett, 2012, 10: 020101

    Article  Google Scholar 

  66. Rao R. General characteristics of modulation transfer function of turbid atmosphere (in Chinese). Acta Opt Sin, 2011, 31: 0900125

    Article  Google Scholar 

  67. Tyler G A. Adaptive optics compensation for propagation through deep turbulence: Initial investigation of gradient descent tomography. J Opt Soc Am A, 2006, 23: 1914–1923

    Article  Google Scholar 

  68. Charnotskii M. Twelve mortal sins of the turbulence propagation science. Proc SPIE, 2011, 8162: 816205-1

  69. Charnotskii M. Common omissions and misconceptions of wave propagation in turbulence: Discussion. J Opt Soc Am A, 2012, 29: 711–721

    Article  Google Scholar 

  70. Charnotskii M. Sparse spectrum model for the turbulent phase simulations. Proc SPIE, 2013, 8732: 873208-1

  71. Charnotskii M. Sparse spectrum model for a turbulent phase. J Opt Soc Am A, 2013, 30: 479–488

    Article  Google Scholar 

  72. Charnotskii M. Statistics of the sparse spectrum turbulent phase. J Opt Soc Am A, 2013, 30: 2455–2465

    Article  Google Scholar 

  73. Naeh I, Katzir A. Perfectly correlated phase screen realization using sparse spectrum harmonic augmentation. Appl Opt, 2014, 53: 6168–6174

    Article  Google Scholar 

  74. Charnotskii M I. Optical phase under deep turbulence conditions. J Opt Soc Am A, 2014, 31: 1766–1772

    Article  Google Scholar 

  75. Charnotskii M. Wave propagation modeling with non-Markov phase screens. J Opt Soc Am A, 2016, 33: 561–569

    Article  Google Scholar 

  76. Kouznetsov D, Voitsekhovich V V, Ortega-Martinez R. Simulations of turbulence-induced phase and log-amplitude distortions. Appl Opt, 1997, 36: 464–469

    Article  Google Scholar 

  77. Safari M, Hranilovic S. Simulation of atmospheric turbulence for optical systems with extended sources. Appl Opt, 2012, 51: 7509–7517

    Article  Google Scholar 

  78. Ochs G R, Bergman R R, Snyder J R. Laser-beam scintillation over horizontal paths from 55 to 145 kilometers. J Opt Soc Am, 1969, 59: 231–234

    Article  Google Scholar 

  79. Perlot N, Giggenbach D, Henniger H, et al. Measurements of the beam-wave fluctuationsover a 142 km atmospheric path. Proc SPIE, 2006, 6304: 630410

    Article  Google Scholar 

  80. Vorontsov M A, Carhart G W, Gudimetla V S R, et al. Characterization of atmospheric turbulence effects over 149 km propagation path using multiwavelength laser beacons. In: Proceedings of the 2010 Advanced Maui Optical and Space Surveillance Technologies Conference. Curran, 2010

    Google Scholar 

  81. Gurvich A S, Gorbunov M E, Fedorova O V, et al. Spatiotemporal structure of a laser beam over 144 km in a Canary Islands experiment. Appl Opt, 2012, 51: 7374–7383

    Article  Google Scholar 

  82. Rao R, Li Y. Light propagation through non-Kolmogorov-type atmospheric turbulence and its effects on optical engineering (in Chinese). Acta Opt Sin, 2015, 35: 0501003

    Article  Google Scholar 

  83. Li Y, Zhu W, Qian X, et al. Simulation of the scintillation index of plane wave propagating through general non-Kolmogorov atmospheric turbulence path (in Chinese). Acta Opt Sin, 2015, 35: 0701004

    Article  Google Scholar 

  84. Rao R, Wang S, Liu X, Gong Z. Probability distribution of laser irradiance scintillation in a real turbulent atmosphere (in Chinese). Acta Opt Sin, 1999, 19: 81–86

    Google Scholar 

  85. Wheelon A D. Skewed distribution of irradiance predicted by the second-order Rytov approximation. J Opt Soc Am A, 2001, 18: 2789–2798

    Article  Google Scholar 

  86. Capraro I, Tomaello A, Dall’Arche A, et al. Impact of turbulence in long range quantum and classical communications. Phys Rev Lett, 2012, 109: 200502

    Article  Google Scholar 

  87. Consortini A, Cochetti F, Churnside J H, et al. Inner-scale effect on irradiance variance measured for weak-to-strong atmospheric scintillation. J Opt Soc Am A, 1993, 10: 2354–2363

    Article  Google Scholar 

  88. Garrido-Balsells J M, Jurado-Navas A, Paris J F, et al. Novel formulation of the m model through the Generalized-K distribution for atmospheric optical channels. Opt Express, 2015, 23: 6345–6358

    Article  Google Scholar 

  89. Barrios R, Dios F. Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves. Opt Express, 2012, 20: 13055–13064

    Article  Google Scholar 

  90. Barrios R, Dios F. Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence. Optics Laser Tech, 2013, 45: 13–20

    Article  Google Scholar 

  91. Yura H T, Rose T S. Exponentiated Weibull distribution family under aperture averaging Gaussian beam waves: Comment. Opt Express, 2012, 20: 20680–20683

    Article  Google Scholar 

  92. Barrios R, Dios F. Exponentiated Weibull fading model for free-space optical links with partially coherent beams under aperture averaging. Opt Eng, 2013, 52: 046003

    Article  Google Scholar 

  93. Nikishov V V, Nikishov V I. Spectrum of turbulent fluctuations of the sea-water refraction index. Inter J Fluid Mech Res, 2000, 27: 82–98

    Article  MathSciNet  Google Scholar 

  94. Baykal Y. Expressing oceanic turbulence parameters by atmospheric turbulence structure constant. Appl Opt, 2016, 55: 1228–1231

    Article  Google Scholar 

  95. Nootz G, Jarosz E, Dalgleish F R, et al. Quantification of optical turbulence in the ocean and its effects on beam propagation. Appl Opt, 2016, 55: 8813–8820

    Article  Google Scholar 

  96. Liu Z J, Zhou P, Xu X J, et al. Coherent beam combining of high power fiber lasers: Progress and prospect. Sci China Tech Sci, 2013, 56: 1597–1606

    Article  Google Scholar 

  97. Zhou P, Liu Z, Xu X. Comparative of coherent combining and incoherent combining of fiber lasers. Chin J Laser, 2009, 36: 276–280

    Article  Google Scholar 

  98. Weyrauch T, Vorontsov M, Mangano J, et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km. Opt Lett, 2016, 41: 840–843

    Article  Google Scholar 

  99. Vorontsov M, Filimonov G, Ovchinnikov V, et al. Comparative efficiency analysis of fiber-array and conventional beam director systems in volume turbulence. Appl Opt, 2016, 55: 4170–4185

    Article  Google Scholar 

  100. Zhou P, Ma Y, Wang X, et al. Propagation efficiency of various combined beams in turbulent atmosphere. Chin J Laser, 2010, 37: 733–738

    Article  Google Scholar 

  101. Sprangle P, Hafizi B, Ting A, et al. High-power lasers for directedenergy applications. Appl Opt, 2015, 54: F201

    Article  Google Scholar 

  102. Nelson W, Sprangle P, Davis C C. Atmospheric propagation and combining of high-power lasers. Appl Opt, 2016, 55: 1757–1764

    Article  Google Scholar 

  103. Ursin R, Tiefenbacher F, Schmitt-Manderbach T, et al. Entanglement- based quantum communication over 144 km. Nat Phys, 2007, 3: 481–486

    Article  Google Scholar 

  104. Yin J, Ren J G, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 2012, 488: 185–188

    Article  Google Scholar 

  105. Villoresi P, Jennewein T, Tamburini F, et al. Experimental verification of the feasibility of a quantum channel between space and Earth. New J Phys, 2008, 10: 033038

    Article  Google Scholar 

  106. Yin J, Cao Y, Liu S B, et al. Experimental quasi-single-photon transmission from satellite to earth. Opt Express, 2013, 21: 20032

    Article  Google Scholar 

  107. Shapiro J H. Imaging and optical communication through atmospheric turbulence. In: Strohbehn J W, Eds. Laser Beam Propagation in the Atmosphere. Berlin: Springer-Verlag, 1978

    Google Scholar 

  108. Shapiro J H. Near-field turbulence effects on quantum-key distribution. Phys Rev A, 2003, 67: 022309

    Article  Google Scholar 

  109. Shapiro J H. Scintillation has minimal impact on far-field Bennett- Brassard 1984 protocol quantum key distribution. Phys Rev A, 2011, 84: 032340

    Article  Google Scholar 

  110. Milonni P W, Carter J H, Peterson C G, et al. Effects of propagation through atmospheric turbulence on photon statistics. J Opt B-Quantum Semiclass Opt, 2004, 6: S742–S745

    Article  Google Scholar 

  111. Vasylyev D Y, Semenov A A, Vogel W. Towards global quantum communication: beam wandering preserves quantumness. Phys Rev Lett, 2012, 108: 220501-1; New J Physics, 2012, 14: 123018-1

  112. Semenov A A, Töppel F, Vasylyev D Y, et al. Homodyne detection for atmosphere channels. Phys Rev A, 2012, 85: 013826

    Article  Google Scholar 

  113. Semenov A A, Vogel W. Quantum light in the turbulent atmosphere. Phys Rev A, 2009, 80: 021802

    Article  Google Scholar 

  114. Semenov A A, Vogel W. Entanglement transfer through the turbulent atmosphere. Phys Rev A, 2010, 81: 023835

    Article  Google Scholar 

  115. Tang F, Zhu B. Scintillation discriminator improves free-space quantum key distribution. Chin Opt Lett, 2013, 11: 090101–90104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RuiZhong Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, R. Science and technology of atmospheric effects on optical engineering: Progress in 3rd quinquennium of 21st century. Sci. China Technol. Sci. 60, 1771–1783 (2017). https://doi.org/10.1007/s11431-017-9049-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9049-6

Keywords

Navigation