Skip to main content
Log in

Mesh stiffness evaluation of an internal spur gear pair with tooth profile shift

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Tooth profile shift will change the thickness of gear teeth and a part of geometrical parameters of a gear pair, thus influencing its mesh stiffness and consequently the dynamic performances. In this paper, an analytical mesh stiffness calculation model for an internal gear pair in mesh considering the tooth profile shift is developed based on the potential energy principle. Geometrical representations of the tooth profile shift are firstly derived, and then fitted into the analytical tooth stiffness model of gears. This model could supply a convenient way for mesh stiffness calculation of profile shifted spur gears. Then, simulation studies are conducted based on the developed model to demonstrate the effects of tooth profile shift coefficient on the tooth compliances and the mesh stiffness of the internal spur gear pair. The results show that tooth profile shift has an obvious influence on the mean value, amplitude variation and phase of the mesh stiffness, from which it can be predicted that the dynamic response of an internal gear transmission system will be affected by the tooth profile shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hidaka T, Terauchi Y, Ishioka K. Dynamic behavior of planetary gear-2nd report: displacement of sun gear and ring gear. Bull JSME, 1976, 19: 1563–1570

    Article  Google Scholar 

  2. Hidaka T, Terauchi Y, Nohara M, et al. Dynamic behavior of planetary gear-3rd report: displacement of ring gear in direction of line of action. Bull JSME, 1977, 20: 1663–1672

    Article  Google Scholar 

  3. Karas F. Elastische Formänderung und Lastverteilung beim Doppeleingriff gerader Stirnradzähne. V.D.I. Forschh. 1941, 406: 1–17

    Google Scholar 

  4. Chen Z G, Shao Y M. Dynamic simulation of planetary gear with tooth root crack in ring gear. Eng Fail Anal, 2013, 31: 8–18

    Article  Google Scholar 

  5. Chen Z G, Shao Y M. Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth. Eng Fail Anal, 2011, 18: 2149–2164

    Article  Google Scholar 

  6. Chen Z G, Shao Y M. Mesh stiffness of an internal spur gear pair with ring gear rim deformation. Mech Mach Theory, 2013, 69: 1–12

    Article  Google Scholar 

  7. Chen Z G, Shao Y M, Su D Z. Dynamic simulation of planetary gear set with flexible spur ring gear. J Sound Vib, 2013, 332: 7191–7204

    Article  Google Scholar 

  8. Satoshi O D A, Miyachika K. Root stress of thin-rimmed internal spur gear supported with pins. JSME Int J, 1987, 30: 646–652

    Article  Google Scholar 

  9. Kahraman A, Kharazi A A, Umrani M. A deformable body dynamic analysis of planetary gears with thin rims. J Sound Vib, 2003, 262: 752–768

    Article  Google Scholar 

  10. Kahraman A. Load sharing characteristics of planetary transmissions. Mech Mach Theory, 1994, 29: 1151–1165

    Article  MathSciNet  Google Scholar 

  11. Singh A. Load sharing behavior in epicyclic gears: physical explanation and generalized formulation. Mech Mach Theory, 2010, 45: 511–530

    Article  MATH  Google Scholar 

  12. Singh A. Application of a system level model to study the planetary load sharing behavior. ASME J Mech Design, 2005, 127: 469–476

    Article  Google Scholar 

  13. Sun T, Hu H. Nonlinear dynamics of a planetary gear system with multiple clearances. Mech Mach Theory, 2003, 38: 1371–1390

    Article  MATH  Google Scholar 

  14. Lin J, Parker R G. Analytical characterization of the unique properties of planetary gear free vibration. T ASME J Vib Acoust, 1999, 121: 316–321

    Article  Google Scholar 

  15. Lei Y G, Lin J, Zuo M J, et al. Condition monitoring and fault diagnosis of planetary gearboxes: A review. Measurement, 2014, 48: 292–305

    Article  Google Scholar 

  16. Chaari F, Fakhfakh T, Haddar M. Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness. Eur J Mech A-Solids, 2009, 28: 461–468

    Article  MATH  Google Scholar 

  17. Weber C. The deformation of loaded gears and the effect on their load carrying capacity. Sponsored research, British Department of Science and Industrial Research, London, 1949

    Google Scholar 

  18. Cornell R W. Compliance and stress sensitivity of spur gear teeth. ASME J Mech Design, 1981, 103: 447–459

    Article  Google Scholar 

  19. O’Donnell W J. Stress and deflection of built-in beams. ASME Paper No. 62-WA-16, 1974

    Google Scholar 

  20. Omar F K, Moustafa K A F, Emam S. Mathematical modeling of gearbox including defects with experimental verification. J Vib Control, 2011, 18: 1310–1321

    Article  Google Scholar 

  21. Yang D C H, Lin J Y. Hertzian damping, tooth friction and bending elasticity in gear impact dynamics. J Mech T Auto Design, 1987, 109: 189–196

    Article  Google Scholar 

  22. Tian X. Dynamic Simulation for system response of gearbox including localized gear faults. Dissertation of Master Degree. Alberta: University of Alberta, Edmonton, 2004

    Google Scholar 

  23. Tian X, Zuo M J, Fyfe K R. Analysis of the vibration response of a gearbox with gear tooth faults. In: The 2004 ASME International Mechanical Engineering Congress and Exposition, Anaheim, California USA, 2004: 785–793

    Google Scholar 

  24. Wu S, Zuo M J, Parey A. Simulation of spur gear dynamics and estimation of fault growth. J Sound Vib, 2008, 317: 608–624

    Article  Google Scholar 

  25. Mohammed O D, Rantatalo M, Aidanpää J. Improving mesh stiffness calculation of cracked gears for the purpose of vibration-based fault analysis. Eng Fail Anal, 2013, 34: 235–251

    Article  Google Scholar 

  26. Liang X H, Zuo M J, Patel T H. Evaluating the time-varying mesh stiffness of a planetary gear set using the potential energy method. P I Mech Eng C-J Mec, 2014, 228: 535–547

    Article  Google Scholar 

  27. Liang X H, Zuo M J, Pandey M. Analytically evaluating the influence of crack on the mesh stiffness of a planetary gear set. Mech Mach Theory, 2014, 76: 2014

    Article  Google Scholar 

  28. Chen Z G, Shao Y M. Mesh stiffness calculation of a spur gear pair with tooth profile modification and tooth root crack. Mech Mach Theory, 2013, 62: 63–74

    Article  Google Scholar 

  29. Wang Q, Hu P, Zhang Y, et al. A model to determine mesh characteristics in a gear pair with tooth profile error. Adv Mech Eng, 2014: 1–10

    Google Scholar 

  30. AGMA 913-A98. Method for specifying the geometry of spur and helical gears, 1998

    Google Scholar 

  31. Mirica R F, Dobre G. On the distribution of the profile shift coefficients between mating gears in the case of cylindrical gear. In: 12th IFToMM World Congress, Besançon, 2007

    Google Scholar 

  32. Hu Y M, Shao Y M, Chen Z G, et al. Transient meshing performance of gears with different modification coefficients and helical angles using explicit dynamic FEA. Mech Syst Signal Pr, 2011, 25: 1786–1802

    Article  Google Scholar 

  33. ISO/TR 4467, Addendum modification of the teeth of cylindrical gears for speed-reducing and speed-increasing gear pairs, 1982

    Google Scholar 

  34. DIN 3992, Profilverschiebung bei Stirnrädern mit Aussenverzahnung, 1964

    Google Scholar 

  35. Ristivojevic M, Lazovic T, Vencl A. Studying the load carrying capacity of spur gear tooth flanks. Mech Mach Theory, 2013, 59: 125–137

    Article  Google Scholar 

  36. Marimuthu P, Muthuveerappan G. Optimum profile shift estimation on direct design asymmetric normal and high contact ratio spur gears based on load sharing. Procedia Engineering, 2014, 86: 709–717

    Article  Google Scholar 

  37. Abderazek H, Ferhat D, Atanasovska I, et al. A differential evolution algorithm for tooth profile optimization with respect to balancing specific sliding coefficients of involute cylindrical spur and helical gears. Adv Mech Eng, 2015, 7: 1–11

    Article  Google Scholar 

  38. Rajesh A R, Gonsalvis J, Venugopal K A. Load sharing analysis of bending strength in altered tooth-sum gears operating between a standard center distance and module. Eur J Eng Tech, 2015, 3: 50–61

    Google Scholar 

  39. Shiau T N, Chang J R, Huang K H, et al. Nonlinear dynamic analysis of a multi-gear train with time-varying mesh stiffness including modification coefficient effect. In: Proceedings of ASME Turbo Expo 2011, June 6-10, 2011, Vancouver, British Columbia, Canada

    Google Scholar 

  40. Ma H, Pang X, Feng R, et al. Evaluation of optimum profile modification curves of profile shifted spur gears based on vibration responses. Mech Syst Signal Pr, 2016, 70-71: 1131–1149

    Article  Google Scholar 

  41. Ma H, Feng R, Pang X, et al. Effects of tooth crack on vibration responses of a profile shifted gear rotor system. J Mech Sci Tech, 2015, 29: 4093–4104

    Article  Google Scholar 

  42. Lebold M, McClintic K, Campbell R, et al. Review of vibration analysis methods for gearbox diagnostics and prognostics. In: Proceedings of the 54th meeting of the society for machinery failure prevention technology, Virginia Beach, VA, 2000. 623–634

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZaiGang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhai, W., Shao, Y. et al. Mesh stiffness evaluation of an internal spur gear pair with tooth profile shift. Sci. China Technol. Sci. 59, 1328–1339 (2016). https://doi.org/10.1007/s11431-016-6090-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-6090-6

Keywords

Navigation