Skip to main content
Log in

Discussion on the extensions of the entransy theory

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, the preconditions for the extensions of the entransy theory are summarized and discussed. As the physical meaning of entransy is the “potential energy” of thermal energy, the concepts and analyses method of the entransy theory can be extended based on the viewpoint of potential energy. The extension to microeconomics is taken as an example to show how the entransy theory is extended. The concept of economic entransy is defined based on the analogy analysis between heat transfer and microeconomics, and the indirect tax is found to be the “potential energy” of goods or services that the government takes from the market. With the extension, a new viewpoint is introduced to understand and analyze the microeconomic system. If the irreversibility in nature makes the potential energy in one system can never increase automatically, the entransy decrease principle and the corresponding equilibrium criteria can further be extended. Furthermore, if the mathematical expressions of the governing equations of the analyzed physical or social phenomena in the system are the same as those in heat transfer, the principle of least action and the optimization principles in the entransy theory can be extended. More similarities between heat transfer and the other phenomena result in more extensions of the entransy theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schneider P J. Conduction Heat Transfer. Boston: Addison-Wesley, 1955. 338–339

    Google Scholar 

  2. Guo Z Y, Zhu H Y, Liang X G. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50: 2545–2556

    Article  MATH  Google Scholar 

  3. Cheng X T, Liang X G. Entransy: Its physical basis, applications and limitations. Chin Sci Bull, 2014, 59: 5309–5323

    Article  Google Scholar 

  4. Chen Q, Ren J X, Guo Z Y. The extremum principle of mass entransy dissipation and its application to decontamination ventilation designs in space station cabins. Chin Sci Bull, 2009, 54: 2862–2870

    Google Scholar 

  5. Lighthill M J, Whitham G B. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc R Soc A-Math Phys Eng Sci, 1955, 229: 317–345

    Article  MATH  Google Scholar 

  6. Richards P I. Shock waves on the highway. Operations Res, 1956, 4: 42–51

    Article  MathSciNet  Google Scholar 

  7. Cheng X T, Liang X G, Xu X H. Principles of potential entransy in generalized flow. Acta Phys Sin, 2011, 60: 118103

    Google Scholar 

  8. Rozonoer L I. A generalized thermodynamic approach on resource exchange and allocation. I. Autom Rem contr, 1973, 5: 115–132

    Google Scholar 

  9. De Vos A. Endoreversible economics. Energy Conv Manage, 1997, 38: 311–317

    Article  Google Scholar 

  10. Cheng X T, Liang X G, Guo Z Y. Entransy decrease principle of heat transfer in an isolated system. Chin Sci Bull, 2011, 56: 847–854

    Article  Google Scholar 

  11. Cheng X G. Entransy and Its Application in Heat Transfer Optimization. Dissertation for Doctoral Degree. Beijing: Tsinghua University, 2004

    Google Scholar 

  12. Cheng X T, Liang X G. Entransy flux of thermal radiation and its application to enclosures with opaque surfaces. Int J Heat Mass Transfer, 2011, 54: 269–278

    Article  MATH  Google Scholar 

  13. Cheng X T, Xu X H, Liang X G. Application of entransy to optimization design of parallel thermal network of thermal control system in spacecraft. Sci China Tech Sci, 2011, 54: 964–971

    Article  MATH  Google Scholar 

  14. Zheng Z J, He Y L, Li Y S. An entransy dissipation-based optimization principle for solar power tower plants. Sci China Tech Sci, 2014, 57: 773–783

    Article  Google Scholar 

  15. Xia S J, Chen L G, Sun F R. Optimization for entransy dissipation minimization in heat exchanger. Chin Sci Bull, 2009, 54: 3587–3595

    Article  Google Scholar 

  16. Xie Z H, Chen L G, Sun F R. Comparative study on constructal optimizations of T-shaped fin based on entransy dissipation rate minimization and maximum thermal resistance minimization. Sci China Tech Sci, 2011, 54: 1249–1258

    Article  MATH  Google Scholar 

  17. Cheng X T, Liang X G. Application of entransy optimization to one-stream series-wound and parallel heat exchanger networks. Heat Transfer Eng, 2014, 35: 985–995

    Article  Google Scholar 

  18. Cheng X T, Liang X G. Optimization principles for two-stream heat exchangers and two-stream heat exchanger networks. Energy, 2012, 46: 386–392

    Article  Google Scholar 

  19. Yu H, Wen J, Xu G, et al. Theoretically and numerically investigation about the novel evaluating standard for convective heat transfer enhancement based on the entransy theory. Int J Heat Mass Transfer, 2016, 98: 183–192

    Article  Google Scholar 

  20. Cheng X T, Zhang Q Z, Liang X G. Analyses of entransy dissipation, entropy generation and entransy-dissipation-based thermal resistance on heat exchanger optimization. Appl Thermal Eng, 2012, 38: 31–39

    Article  Google Scholar 

  21. Chen L G. Progress in entransy theory and its applications. Chin Sci Bull, 2012, 57: 4404–4426

    Article  Google Scholar 

  22. Cheng X T, Liang X G, Xu X H. Microscopic expression of entransy. Acta Phys Sin, 2011, 60: 060512

    Google Scholar 

  23. Feng H, Chen L, Xie Z, et al. Constructal entransy optimizations for insulation layer of steel rolling reheating furnace wall with convective and radiative boundary conditions. Chin Sci Bull, 2014, 59: 2470–2477

    Article  Google Scholar 

  24. Cheng X T, Xu X H, Liang X G. Homogenization design of temperature field for the side surface of a cylindrical satellite. J Ordnance Equip Eng, 2016, 5: 1–6

    Google Scholar 

  25. Feng H, Chen L, Xie Z, et al. Constructal entransy dissipation rate minimization for triangular heat trees at micro and nanoscales. Int J Heat Mass Transfer, 2015, 84: 848–855

    Article  Google Scholar 

  26. Cheng X T, Xu X H, Liang X G. Radiative entransy flux in enclosures with non-isothermal or non-grey, opaque, diffuse surfaces and its application. Sci China Tech Sci, 2011, 54: 2446–2456

    Article  Google Scholar 

  27. Feng H J, Chen L G, Liu X, et al. Generalized constructal optimization of strip laminar cooling process based on entransy theory. Sci China Tech Sci, 2016, 59: 1687–1695

    Article  Google Scholar 

  28. Cheng X T, Liang X G. Analyses of entropy generation and heat entransy loss in heat transfer and heat-work conversion. Int J Heat Mass Transfer, 2013, 64: 903–909

    Article  Google Scholar 

  29. Cheng X, Liang X. Entransy loss in thermodynamic processes and its application. Energy, 2012, 44: 964–972

    Article  Google Scholar 

  30. Yang A, Chen L, Xia S, et al. The optimal configuration of reciprocating engine based on maximum entransy loss. Chin Sci Bull, 2014, 59: 2031–2038

    Article  Google Scholar 

  31. Cheng X T, Liang X G. Work entransy and its applications. Sci China Tech Sci, 2015, 58: 2097–2103

    Article  Google Scholar 

  32. Cheng X T, Chen Q, Hu G J, et al. Entransy balance for the closed system undergoing thermodynamic processes. Int J Heat Mass Transfer, 2013, 60: 180–187

    Article  Google Scholar 

  33. Han C H, Kim K H. Entransy and exergy analyses for optimizations of heat-work conversion with carnot cycle. J Therm Sci, 2016, 25: 242–249

    Article  Google Scholar 

  34. Cheng X T, Liang X G. Entransy analyses of heat-work conversion systems with inner irreversible thermodynamic cycles. Chin Phys B, 2015, 24: 120503

    Article  Google Scholar 

  35. Cheng X T, Dong Y, Liang X G. Potential entransy and potential entransy decrease principle. Acta Phys Sin, 2011, 60: 114402

    Google Scholar 

  36. Wu J. Potential Energy (Entransy) in Thermal Science and Its Application. Dissertation for Doctoral Degree. Beijing: Tsinghua University, 2009

    Google Scholar 

  37. Chen Q. Irreversibility and Optimization of Convective Transport Processes. Dissertation for Doctoral Degree. Beijing: Tsinghua University, 2008

    Google Scholar 

  38. Cheng X T, Liang X G. T-q diagram of heat transfer and heat-work conversion. Int Commun Heat Mass Transfer, 2014, 53: 9–13

    Article  Google Scholar 

  39. Chen Q, Xu Y C, Guo Z Y. The property diagram in heat transfer and its applications. Chin Sci Bull, 2012, 57: 4646–4652

    Article  Google Scholar 

  40. Chen L, Li J, Sun F. Generalized irreversible heat-engine experiencing a complex heat-transfer law. Appl Energy, 2008, 85: 52–60

    Article  Google Scholar 

  41. Chen L, Xia S, Sun F. Optimal paths for minimizing entropy generation during heat transfer processes with a generalized heat transfer law. J Appl Phys, 2009, 105: 044907

    Article  Google Scholar 

  42. Xia S, Chen L, Sun F. Optimal paths for minimizing lost available work during heat transfer processes with a generalized heat transfer law. Braz J Phys, 2009, 39: 99–106

    Article  Google Scholar 

  43. Smith A. An Inquiry Into the Nature and Causes of the Wealth of Nations. Chicago: University of Chicago Press, 1976

    Google Scholar 

  44. Mankiw N G. Principles of Economics. New York: Cengage Learning, 2010

    Google Scholar 

  45. Mas-colell A, Whinston M D, Green J R. Microeconomic Theory. New York: Oxford University Press, 1995. 312–313

    MATH  Google Scholar 

  46. Varian H R. Intermediate Microeconomics—A Modern Approach. New York: W.W. Norton & Company, 2010

    Google Scholar 

  47. Samuelson P, William D. Economics. New York: The McGraw-Hill Company, 1998. 81–104

    Google Scholar 

  48. Çaliskan K. Market Threads. Princeton: Princeton University Press, 2010. 188–208

    Google Scholar 

  49. Chen Y. Maximum profit configurations of commercial engines. Entropy, 2011, 13: 1137–1151

    Article  MATH  Google Scholar 

  50. Chen L, Wu C, Sun F. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilib Thermodyn, 1999, 24: 327–359

    MATH  Google Scholar 

  51. Chen L G, Xia S J. Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles. Beijing: Science Press, 2016

    Google Scholar 

  52. Chen L G, Feng H J. Multi-Objective Constructal Optimization for Flow and Heat and Mass Transfer Processes. Beijing Science Press, 2016

    Google Scholar 

  53. Chen L, Feng H, Xie Z. Generalized thermodynamic optimization for iron and steel production processes: Theoretical exploration and application cases. Entropy, 2016, 18: 353

    Article  Google Scholar 

  54. Rozonoer L I. A generalized thermodynamic approach to resource exchange and allocation. II. Autom Rem Contr, 1973, 34: 915–927

    Google Scholar 

  55. Rozonoer L I. A generalized thermodynamic approach to resource exchange and allocation. III. Autom Rem Contr, 1973, 34: 1272–1290

    MATH  Google Scholar 

  56. Saslow W M. An economic analogy to thermodynamics. Am J Phys, 1999, 67: 1239–1247

    Article  Google Scholar 

  57. De Vos A. Endoreversible thermoeconomics. Energ Conv Manage, 1995, 36: 1–5

    Article  Google Scholar 

  58. De Vos A. Endoreversible thermodynamics versus economics. Energy Conv Manage, 1999, 40: 1009–1019

    Article  Google Scholar 

  59. Martinás K. About irreversibility in economics. Open Syst Inf Dyn, 2000, 7: 349–364

    Article  MathSciNet  MATH  Google Scholar 

  60. Tsirlin A M. Irreversible microeconomics: Optimal processes and control. Autom Remote Control, 2001, 62: 820–830

    Article  MathSciNet  MATH  Google Scholar 

  61. Tsirlin A M, Kazakov V, Kolinko N A. Irreversibility and limiting possibilities of macrocontrolled systems I: Thermodynamics. Open Syst Inf Dyn, 2001, 08: 315–328

    Article  MathSciNet  MATH  Google Scholar 

  62. Tsirlin A M, Kazakov V, Kolinko N A. Irreversibility and limiting possibilities of macrocontrolled systems II: Microeconomics. Open Syst Inf Dyn, 2001, 08: 329–347

    Article  MathSciNet  MATH  Google Scholar 

  63. Amel’kin S A, Martináas K, Tsirlin A M. Optimal control for irreversible processes in thermodynamics and microeconomics. Autom Remote Control, 2002, 63: 519–539

    Article  MathSciNet  MATH  Google Scholar 

  64. Tsirlin A M. Optimization Methods in Thermodynamics and Microeconomics. Moscow: Nauka, 2002

    Google Scholar 

  65. Tsirlin A M. Irreversible Estimates of Limiting Possibilities of Thermodynamic and Microeconomic Systems. Moscow: Nauka, 2003

    MATH  Google Scholar 

  66. Amelkin S. Limiting possibilities of resource exchange process in complex open microeconomic system. Interdiscip Description Complex Syst, 2004, 2: 43–52

    Google Scholar 

  67. Tsirlin A M, Kazakov V A. Optimal processes in irreversible thermodynamics and microeconomics. Interdiscip Description Complex Syst, 2004, 2: 29–42

    MATH  Google Scholar 

  68. Tsirlin A M, Kazakov V. Optimal processes in irreversible microeconomics. Interdiscip Description Complex Syst, 2006, 4: 102–123

    MATH  Google Scholar 

  69. Xia S, Chen L, Sun F. Optimization for capital dissipation minimization in a common of resource exchange processes. Math Comp Model, 2011, 54: 632–648

    Article  MathSciNet  MATH  Google Scholar 

  70. Cheng X T, Xu X H, Liang X G. Homogenization of temperature field and temperature gradient field. Sci China Ser E-Tech Sci, 2009, 52: 2937–2942

    Article  MATH  Google Scholar 

  71. Chen L, Xiao Q, Xie Z, et al. Constructal entransy dissipation rate minimization for tree-shaped assembly of fins. Int J Heat Mass Transfer, 2013, 67: 506–513

    Article  Google Scholar 

  72. Cheng X T, Liang X G. Entransy, entransy dissipation and entransy loss for analyses of heat transfer and heat-work conversion processes. J Therm Ssi Tech, 2013, 8: 337–352

    Article  Google Scholar 

  73. Yuan F, Chen Q. Two energy conservation principles in convective heat transfer optimization. Energy, 2011, 36: 5476–5485

    Article  Google Scholar 

  74. Liu W, Liu Z C, Jia H, et al. Entransy expression of the second law of thermodynamics and its application to optimization in heat transfer process. Int J Heat Mass Transfer, 2011, 54: 3049–3059

    Article  MATH  Google Scholar 

  75. Cheng X T, Zhang Q Z, Xu X H, et al. Optimization of fin geometry in heat convection with entransy theory. Chin Phys B, 2013, 22: 020503

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueTao Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Zhao, J. & Liang, X. Discussion on the extensions of the entransy theory. Sci. China Technol. Sci. 60, 363–373 (2017). https://doi.org/10.1007/s11431-016-0624-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-0624-1

Keywords

Navigation