Skip to main content
Log in

Taming complexity in nonlinear dynamical systems by recycled signal

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, the impacts of the recycled signal on the dynamic complexity have been studied theoretically and numerically in a prototypical nonlinear dynamical system. The Melnikov theory is employed to determine the critical boundary, and the statistical complexity measure (SCM) is defined and calculated to quantify the dynamic complexity. It has been found that one can switch the dynamics from the periodic motion to a chaotic one or suppress the chaotic behavior to a periodic one, merely via adjusting the time delay or the amplitude of the recycled signal, therefore, providing a candidate to tame the dynamic complexity in nonlinear dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mackey M, Glass L. Oscillation and chaos in physiological control system. Science, 1977, 197: 287–289

    Article  Google Scholar 

  2. Foss J, Longtin A, Mensour B, et al. Multistability and delayed recurrent loops. Phys Rev Lett, 1996, 76: 708–711

    Article  Google Scholar 

  3. Foss J, Moss F, Milton J. Noise, multistability, and delayed recurrent loops. Phys Rev E, 1997, 55: 4536–4543

    Article  Google Scholar 

  4. Xu J, Yu P. Delay-induced bifurcations in a non-autonomous system with delayed velocity feedbacks. Int J Bifurcat Chaos, 2004, 14: 2777–2798

    Article  MathSciNet  MATH  Google Scholar 

  5. Shayer L, Campbell S A. Stability, bifurcation, and multi-stability in a system of two coupled neurons with multiple time delays. SIAM J Appl Math, 2000, 61: 673–700

    Article  MathSciNet  MATH  Google Scholar 

  6. Liao X, Chen G. Local stability, Hopf and resonant codimension-two bifurcation in a harmonic oscillator with two time delays. Int J Bifurcat Chaos, 2001, 11: 2105–2121

    Article  MathSciNet  MATH  Google Scholar 

  7. Song Z, Xu J. Stability switches and Bogdanov-Takens bifurcation in an inertial two-neuron coupling system with multiple delays. Sci China Tech Sci, 2014, 57: 893–904

    Article  Google Scholar 

  8. Wang H, Wang Q, Zheng Y. Bifurcation analysis for Hindmarsh-Rose neuronal model with time-delayed feedback control and application to chaos control. Sci China Tech Sci, 2014, 57: 872–878

    Article  Google Scholar 

  9. Nana Nbendjo B N, Salissou Y, Woafo P. Active control with delay of catastrophic motion and horseshoes chaos in a single well Duffing oscillator. Chaos Soliton Fract, 2005; 23: 809–816

    Article  MATH  Google Scholar 

  10. Sun Z, Xu W, Yang X, et al. Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback. Chaos Soliton Fract, 2006, 27: 705–714

    Article  MathSciNet  MATH  Google Scholar 

  11. Sun Z, Xu W, Yang X, et al. Effects of time delays on bifurcation and chaos in a non-autonomous system with multiple time delays. Chaos Soliton Fract, 2007, 31: 39–53

    Article  MathSciNet  MATH  Google Scholar 

  12. van der Heiden U, Walther H O. Existence of chaos in control system with delayed feedback. J Diff Eqs, 1983; 47: 273–295

    Article  MATH  Google Scholar 

  13. Arecchi F T, Giacomelli G, Lapucci A, et al. 2-Dimensional representation of a delayed dynamic system. Phys Rev A, 1992, 45: R4225–R4228

    Article  Google Scholar 

  14. Wang H, Hu H, Wang Z. Global dynamics of a Duffing oscillator with delayed displacement feedback. Int J Bifurcat Chaos, 2004, 14: 2753–2775

    Article  MathSciNet  MATH  Google Scholar 

  15. Ikeda K, Matsumoto K. High-dimensional chaotic behavior in systems with timedelayed feedback. Physica D, 1987, 29: 223–235

    Article  MATH  Google Scholar 

  16. Masoller C. Spatio-temporal dynamics in the coherence collapsed regime of semiconductor lasers with optical feedback. Chaos, 1997, 7: 455–462

    Article  MATH  Google Scholar 

  17. Tonomura A. Applications of electron holography. Rev Mod Phys, 1987, 59: 639–669

    Article  Google Scholar 

  18. Wambaugh J F, Reichhardt C, Olson C J, et al. Superconducting fluxon pumps and lenses. Phys Rev Lett, 1999, 83: 5106–5109

    Article  Google Scholar 

  19. Wei Q, Bechinger C, Leiderer P. Single-file diffusion of colloids in one-dimensional channels. Science, 2000, 287: 625–627

    Article  Google Scholar 

  20. Lutz C, Kollmann M, Bechinger C. Single-file diffusion of colloids in one-dimensional channels. Phys Rev Lett, 2004, 93: 026001

    Article  Google Scholar 

  21. Borromeo M, Giusepponi S, Marchesoni F. Recycled noise rectification: An automated Maxwell’s daemon. Phys Rev E, 2006, 74: 031121

    Article  Google Scholar 

  22. Sun Z, Yang X, Xu W. Resonance dynamics evoked via noise recycling procedure. Phys Rev E, 2012, 85: 061125

    Article  Google Scholar 

  23. Sun Z, Yang X, Xiao Y, et al. Modulating resonance behaviors by noise recycling in bistable systems with time delay. Chaos, 2014, 24: 023126

    Article  MathSciNet  Google Scholar 

  24. Matthias S, Muller F. Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets. Nature, 2003, 424: 53–57

    Article  Google Scholar 

  25. Alberts B, Bray D, Lewis J, et al. New York: Molecular Biology of the Cell, 1994

  26. Grüner G, Zettl A. Charge density wave conduction: A novel collective transport phenomenon in solids. Phys Rep, 1985, 119: 117–232

    Article  Google Scholar 

  27. Borromeo M, Marchesoni F. Stochastic synchronization via noise recycling. Phys Rev E, 2007, 75: 041106

    Article  Google Scholar 

  28. Goulding D, Melnik S, Curtin D, et al. Kramers’ law for a bistable system with time-delayed noise. Phys Rev E, 2007, 76: 031128

    Article  Google Scholar 

  29. Ma J, Hou Z, Xin H. Control coherence resonance by noise recycling. Eur Phys J B, 2009, 69: 101–107

    Article  Google Scholar 

  30. Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical System, and Bifurcations of Vector Fields. New York: Springer-Verlag, 1983

    Book  MATH  Google Scholar 

  31. Wiggins S. Global Bifurcations and Chaos: Analytical Methods, New York: Springer-Verlag, 1988

    Book  MATH  Google Scholar 

  32. Lopez-Ruiz R, Mancini H L, Calbet X. A statistical measure of complexity. Phys Lett A, 1995, 209: 321–326

    Article  Google Scholar 

  33. Sun K, Sprott J C. Dynamics of a simplified Lorenz system. Int J Bifurcat Chaos, 2009, 19: 1357–1366

    Article  MATH  Google Scholar 

  34. He M, Xu W, Sun Z, et al. Stochastic resonance quantified by statistical complexity measures in a bistable system subject to colored noise. Int J Dynam Control, 2013, 1: 254–261

    Article  Google Scholar 

  35. Rosso O A, Larrondo H A, Martin M T, et al. Distinguishing noise from chaos. Phys Rev Lett, 2007, 99: 154102

    Article  Google Scholar 

  36. Martin M T, Plastino A, Rosso O A. Statistical complexity and disequilibrium. Phys Lett A, 2003, 311: 126–132

    Article  MathSciNet  MATH  Google Scholar 

  37. Shannon C E. The mathematical theory of communication. Bell System Tech J, 1948, 27: 379–423, 623–656

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongKui Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Yang, X. & Xu, W. Taming complexity in nonlinear dynamical systems by recycled signal. Sci. China Technol. Sci. 59, 403–410 (2016). https://doi.org/10.1007/s11431-015-5993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5993-y

Keywords

Navigation