Skip to main content
Log in

Large eddy simulation of unsteady transitional flow on the low-pressure turbine blade

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The aim of this paper is to predict the phenomenon of laminar separation, transition and reattachment in a low-pressure turbine (LPT). Self-developed large eddy simulation program of compressible N-S equations was used to describe the flow structures of T106A LPT blade profile at Reynolds number of 1.1×105 based on the exit isentropic velocity and chord length. The computational results show the distributions of time-averaged wall-static pressure coefficient and mean skin-friction coefficient on the blade surface. The locations of laminar separation and reattachment points occur around 87% and 98% axial chord, which agree well with experiment data. The two-dimensional shear layer is gradually unstable along the downstream half of the suction side as a result of the spanwise fluctuation and the roll up of shear layer via Kelvin-Helmholtz (KH) instability. Three-dimensional motions appear near 84% axial chord which later triggers spanwise vortexes and streamwise vortexes, leading to transition to turbulence in the separation bubble. Through introducing the concept of dissipation function, the high loss mainly comes from the places where strong shear layer and intense fluctuation exist. Furthermore, the separation region is only an accumulation center of the low-energy fluid rather than an area of loss source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pacciani R, Marconcini M, Fadai-Ghotbi A, et al. Calculation of high-lift cascades in low pressure turbine conditions using a three-equation model. ASME J Turbomach, 2011, 133: 031016–1-9

    Article  Google Scholar 

  2. Howell R J. Wake-separation Bubble Interactions in Low Reynolds Number Turbomachinery. Dissertation of Doctoral Degree. Cambridge: Cambridge University, 1999

    Google Scholar 

  3. Tyacke J, Tucker P, Jefferson-Loveday R, et al. LES for turbines: Methodologies, cost and future outlooks. ASME Paper, 2013, GT2013–94416

    Google Scholar 

  4. Huang J H. Separation control over low pressure turbine blades using plasma actuators. Dissertation of Doctoral Degree. Iniana: The University of Notre Dame, 2005

    Google Scholar 

  5. Durbin P A. On the k-ɛ stagnation point anomaly. IJHFF, 1996, 17: 89–90

    Google Scholar 

  6. Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition model using local variables-part I: Model formulation. ASME J Turbomach, 2006, 128: 413–422

    Article  Google Scholar 

  7. Langtry R B, Menter F R, Likki S R, et al. A correlation-based transition model using local variables-part II: Test cases and industrial applicatoins. ASME J Turbomach, 2006, 128: 423–434

    Article  Google Scholar 

  8. Suzen Y B, Huang P G, Ashpis D E, et al. A computational fluid dynamics study of transitional flows in low-pressure turbines under a wide range of operating conditions. ASME J Turbomach, 2007, 129: 527–541

    Article  Google Scholar 

  9. Mayle R E. The role of laminar turbulent transition in gas turbine engines. ASME J Turbomach, 1991, 113: 509–537

    Article  Google Scholar 

  10. Engber M, Fottner L. The effect of incoming wakes on boundary layer transition of a highly loaded turbine cascade. AGARD, 1995, CP-517

    Google Scholar 

  11. Fujiwara H, Voke P R, Arakawa C. LES of TL10 LP turbine blade row. In: Proceedings of the 5th International Symposium on Engineering Turbulence Modelling and Experiments. Mallorca, 2002

    Google Scholar 

  12. Karimi M, Paraschivoiu M. Comparison of large eddy simulation methods for flows over gas turbine blades. ASME Paper, 2007, 2007-GT-27410

    Google Scholar 

  13. Raverdy B, Mary I, Sagaut P, et al. High-resolution large-eddy simulation of flow around low-pressure turbine blade. AIAA J, 2003, 41: 390–397

    Article  Google Scholar 

  14. Wissink J G, Rodi W. Direct numerical simulations of transitional flow in turbomachinery. ASME J Turbomach, 2006, 128: 668–678

    Article  Google Scholar 

  15. Sarkar S. Identification of flow structures on a LP turbine blade due to periodic passing wakes. ASME J Turbomach, 2008, 130: 061103–1-10

    Google Scholar 

  16. Tucker P. Computation of unsteady turbomachinery flows: Part 2 LES and hybrids. Prog Aerosp Sci, 2011, 47: 546–569

    Article  Google Scholar 

  17. Bocquet S, Sagaut P, Jouhaud J. A compressible wall model for large-eddy simulation with application to prediction of aerothermal quantities. Phys Fluids, 2012, 24: 065103

    Article  Google Scholar 

  18. Zhang D, Shu J, Lan J B, et al. Large-eddy simulation of boundary layer separation and reattachment in low-pressure turbine cascade (in Chinese). Pro CSEE, 2009, 29: 77–83

    Google Scholar 

  19. D’Ovidio A, Harkins J A, Gostelow J P. Turbulent spot in strong adverse pressure gradient: Part 1-spot behaviour. ASME Paper, 2001, 2001-GT-0194

    Google Scholar 

  20. D’Ovidio A, Harkins J A, Gostelow J P. Turbulent spot in strong adverse pressure gradient: Part 2-spot propagation and spreading rates. ASME Paper, 2001, 2001-GT-0407

    Google Scholar 

  21. Hodson H. Turbulence modelling for unsteady flows in axial turbine: turmunsflat. Brite-Euram Project, 2000, Final TR CT96-1043: 85–99

    Google Scholar 

  22. Wissink J G. DNS of separating, low reynolds number flow in a turbine cascade with incoming wakes. Int J Heat Fluid Flow, 2003, 24: 626–635

    Article  Google Scholar 

  23. Sarkar S, Voke P R. Large-eddy simulation of unsteady surface pressure over a lp turbine due to interactions of passing wakes and inflexional boundary layer. ASME J Turbomach, 2006, 128: 221–231

    Article  Google Scholar 

  24. Stieger R, Hollis D, Hodson H. Unsteady surface pressures due to wake induced transition in laminar separation bubble on a lp turbine cascade. ASME Paper, 2003, GT2003-38303

    Google Scholar 

  25. Germano M. Turbulence: the filtering approach. J Fluid Mech, 1992, 238: 325–336

    Article  MATH  MathSciNet  Google Scholar 

  26. Lilly D K. A proposed modification of the Germano subgrid-scale closure method. Phys Fluid A, 1992, 4: 633–635

    Article  Google Scholar 

  27. Verman B, Geurts B, Kuerten H. A priori tests of large eddy simulation of compressible plane mixing layer. J Eng Math, 1995, 29: 299–327

    Article  Google Scholar 

  28. Knight D, Zhou G, Okong’o N, et al. Compressible large eddy simulation using unstructured grids. AIAA Paper, 1988, AIAA-98-0535

    Google Scholar 

  29. Mittal R, Moin P. Suitability of upwind-biased finite-difference schemes for large-eddy simulation of turbulent flows. AIAA J, 1997, 35: 1415–1417

    Article  MATH  Google Scholar 

  30. Ducros F, Laporte F, Soulères T, et al. High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: Application to compressible flows. J Computational Phys, 2000, 116: 114–139

    Article  Google Scholar 

  31. Blazek J. Computational Fluid Dynamics: Principles and Applications. 2nd eds. Amsterdam: Elsevier, 2005

    Google Scholar 

  32. Turkel E, Vatsa V N. Effect of artificial viscosity on three-dimensional flow solutions. AIAA J, 1994, 32: 39–45

    Article  MATH  Google Scholar 

  33. Stadtmüller P. Investigation of wake-induced transition on the LP turbine cascade T106 A-EIZ. Technical Report, University of the Armed Forces Munich. 2002

    Google Scholar 

  34. Sandberg R D, Pichler R, Chen L. Assessing the sensitivity of turbine cascade flow to inflow disturbances using direct numerical simulation. In: 13th International Symposium for Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity in Turbomachinery (ISUAAAT). Tokyo, 2012

    Google Scholar 

  35. Yang Z, Voke P R. Large eddy simulation of boundary layer separation and transition at a change of surface curvature. J Fluid Mech, 2001, 439: 305–333

    Article  MATH  Google Scholar 

  36. Spalart P, Strelets M. Mechanisms of transition and heat transfer in a separation bubble. J Fluid Mech, 2000, 403: 329–349

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YunFei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, F., Liu, H. et al. Large eddy simulation of unsteady transitional flow on the low-pressure turbine blade. Sci. China Technol. Sci. 57, 1761–1768 (2014). https://doi.org/10.1007/s11431-014-5626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5626-x

Keywords

Navigation