Skip to main content
Log in

Characteristics of atmospheric nitrous oxide observed at Mt. Waliguan GAW global station in the inland Eurasia during eighteen years

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

This study presents atmospheric N2O mole fractions measured from discrete air samples from 2001 to 2018 at Mt. Waliguan (WLG) station (36°17′N, 100°54′E, 3816 m asl) in China, which is a global background station of the World Meteorological Organization/Global Atmosphere Watch Programme (WMO/GAW) in central Eurasia. Observed N2O characteristics of annual means, interannual variability, and seasonal cycles were investigated. Our results show that N2O at WLG possess a distinct increasing trend and a statistically significant seasonal cycle, with an average growth rate of 0.9±0.01 ppb yr−1 (1σ)(1ppb=10−9), which is close to the global mean. The detrended seasonal cycle shows a trough of −0.25±0.04 (1σ) ppb in June and a peak of 0.13±0.07 (1σ) ppb in September, with an amplitude of 0.38 ppb. The pattern is due to combined effects of variation in surface sources, vertical convection within the boundary layer and stratosphere to troposphere transportation (STE). The interannual variability in growth rate was partly driven by quasi-biennial oscillation (QBO) of tropical zonal wind through stratospheric transport into the troposphere. According to a cluster analysis of back trajectories and the corresponding average N2O load, most air masses cover arid and semi-arid areas in inner Asia with low N2O emissions, indicating that the atmospheric N2O at the WLG represents the background N2O level in central Eurasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakwin P S, Hurst D F, Tans P P, Elkins J W. 1997. Anthropogenic sources of halocarbons, sulfur hexafluoride, carbon monoxide, and methane in the southeastern United States. J Geophys Res, 102: 15915–15925

    Article  Google Scholar 

  • Bergamaschi P, Corazza M, Karstens U, Athanassiadou M, Thompson R L, Pison I, Manning A J, Bousquet P, Segers A, Vermeulen AT, Janssens-Maenhout G, Schmidt M, Ramonet M, Meinhardt F, Aalto T, Haszpra L, Moncrieff J, Popa M E, Lowry D, Steinbacher M, Jordan A, O’Doherty S, Piacentino S, Dlugokencky E. 2015. Top-down estimates of European CH4 and N2O emissions based on four different inverse models. Atmos Chem Phys, 15: 715–736

    Article  Google Scholar 

  • Bouwman A F, Van der Hoek K W, Olivier J G J. 1995. Uncertainties in the global source distribution of nitrous oxide. J Geophys Res, 100: 2785–2800

    Article  Google Scholar 

  • Bouwman A F, Taylor J A. 1996. Testing high-resolution nitrous oxide emission estimates against observations using an atmospheric transport model. Glob Biogeochem Cycle, 10: 307–318

    Article  Google Scholar 

  • Dlugokencky E J, Steele L P, Lang P M, Masarie K A. 1994. The growth rate and distribution of atmospheric methane. J Geophys Res, 99: 17021–17043

    Article  Google Scholar 

  • Dlugokencky E J. 2018. atmospheric nitrous oxide dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network, 1997–2017. Version: 2018–08-02. ftp://aftp.cmdl.noaa.gov/data/trace_gases/n2o/flask/surface/

  • Draxler R, Hess G. 1998. An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Austral Meteorol Magaz, 47: 295–308

    Google Scholar 

  • Dobbie K E, Smith K A. 2003. Impact of different forms of N fertilizer on N2O emissions from intensive grassland, Nutr. Nutr Cycl Agroecosyst, 67: 37–46

    Article  Google Scholar 

  • Filippa G, Freppaz M, Williams M W, Helmig D, Liptzin D, Seok B, Hall B, Chowanski K. 2009. Winter and summer nitrous oxide and nitrogen oxides fluxes from a seasonally snow-covered subalpine meadow at Niwot Ridge, Colorado. Biogeochemistry, 95: 131–149

    Article  Google Scholar 

  • Flessa H, Dörsch P, Beese F. 1995. Seasonal variation of N2 O and CH4 fluxes in differently managed arable soils in southern Germany. J Geophys Res, 100: 23115–23124

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Dorland RV. 2007. Changes in Atmospheric Constituents and in Radiative Forcing. 129–234. Cambridge: Cambridge University Press

    Google Scholar 

  • Fu Y, Liu C, Lin F, Hu X, Zheng X, Zhang W, Cao G. 2018. Quantification of year-round methane and nitrous oxide fluxes in a typical alpine shrub meadow on the Qinghai-Tibetan Plateau. Agr EcoSyst Environ, 255: 27–36

    Article  Google Scholar 

  • Groffman P M, Hardy J P, Driscoll C T, Fahey T J. 2006. Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Glob Change Biol, 12: 1748–1760

    Article  Google Scholar 

  • Hall B D, Dutton G S, Elkins J W. 2007. The NOAA nitrous oxide standard scale for atmospheric observations. J Geophys Res, 112: D09305

    Article  Google Scholar 

  • Hamilton K, Fan S. 2000. Effects of the stratospheric quasi-biennial oscillation on long-lived greenhouse gases in the troposphere. J Geophys Res, 105: 20581–20587

    Article  Google Scholar 

  • Harris J M, Dlugokencky E J, Oltmans S J, Tans P P, Conway T J, Novelli P C, Thoning K W, Kahl J D W. 2000. An interpretation of trace gas correlations during Barrow, Alaska, winter dark periods, 1986–1997. J Geophys Res, 105: 17267–17278

    Article  Google Scholar 

  • Hirsch A I, Michalak A M, Bruhwiler L M, Peters W, Dlugokencky E J, Tans P P. 2006. Inverse modeling estimates of the global nitrous oxide surface flux from 1998–2001. Glob Biogeochem Cycle, 20: GB1008

    Article  Google Scholar 

  • Holton J R, Haynes P H, McIntyre M E, Douglass A R, Rood R B, Pfister L. 1995. Stratosphere-troposphere exchange. Rev Geophys, 33: 403–439

    Article  Google Scholar 

  • Huang J, Golombek A, Prinn R, Weiss R, Fraser P, Simmonds P, Dlugokencky E J, Hall B, Elkins J, Steele P, Langenfelds R, Krummel P, Dutton G, Porter L. 2008. Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork measurements, a chemical transport model, and an inverse method. J Geophys Res, 113: D17313

    Article  Google Scholar 

  • Ishijima K, Nakazawa T, Sugawara S, Aoki S, Saeki T. 2001. Concentration variations of tropospheric nitrous oxide over Japan. Geophys Res Lett, 28: 171–174

    Article  Google Scholar 

  • Ishijima K, Nakazawa T, Aoki S. 2009. Variations of atmospheric nitrous oxide concentration in the northern and western Pacific. Tellus B-Chem Phys Meteor, 61: 408–415

    Article  Google Scholar 

  • Ishijima K, Patra P K, Takigawa M, Machida T, Matsueda H, Sawa Y, Steele L P, Krummel P B, Langenfelds R L, Aoki S, Nakazawa T. 2010. Stratospheric influence on the seasonal cycle of nitrous oxide in the troposphere as deduced from aircraft observations and model simulations. J Geophys Res, 115: D20308

    Article  Google Scholar 

  • Janssens-Maenhout G, Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F, Bergamaschi P, Pagliari V, Olivier J G J, Peters J A H W, van Aardenne J A, Monni S, Doering U, Petrescu AMR, Solazzo E, Oreggioni G D. 2017. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst Sci Data, 11: 959–1002

    Article  Google Scholar 

  • Jiang C, Yu G, Fang H, Cao G, Li Y. 2010. Short-term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmos Environ, 44: 2920–2926

    Article  Google Scholar 

  • Jiang X, Ku W L, Shia R L, Li Q, Elkins J W, Prinn R G, Yung Y L. 2007. Seasonal cycle of N2O: Analysis of data. Glob Biogeochem Cycle, 21: GB1006

    Article  Google Scholar 

  • Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA, 106: 3041–3046

    Article  Google Scholar 

  • Kaiser E A, Kohrs K, Kücke M, Schnug E, Heinemeyer O, Munch J C. 1998. Nitrous oxide release from arable soil: Importance of N-fertilization, crops and temporal variation. Soil Biol Biochem, 30: 1553–1563

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D. 1996. The NCEP NCAR 40-year reanalysis project. Bull Amer Meteor Soc, 77: 437–471

    Article  Google Scholar 

  • Khalil M A K, Rasmussen R A. 1992. The global sources of nitrous oxide. J Geophys Res, 97: 14651–14660

    Article  Google Scholar 

  • Klemedtsson L, Svensson B H, Rosswall T. 1987. Dinitrogen and nitrous oxide produced by denitrification and nitrification in soil with and without barley plants. Plant Soil, 99: 303–319

    Article  Google Scholar 

  • Komhyr W D, Gammon R H, Harris T B, Waterman L S, Conway T J, Taylor W R, Thoning K W. 1985. Global atmospheric CO2 distribution and variations from 1968–1982 NOAA/GMCC CO2 flask sample data. J Geophys Res, 90: 5567–5596

    Article  Google Scholar 

  • Lang P M, Steele L P, Martin R C, Masarie K A. 1990. Atmospheric methane data for the period 1983–1985 from the NOAA/GMCC global cooperative flask sampling network

  • Levin I, Ciais P, Langenfelds R, Schmidt M, Ramonet M, Sidorov K, Tchebakova N, Gloor M, Heimann M, Schulze E D, Vygodskaya N N, Shibistova O, Lloyd J. 2002. Three years of trace gas observations over the EuroSiberian domain derived from aircraft sampling—A concerted action. Tellus B, 54: 696–712

    Google Scholar 

  • Liang Q, Douglass A R, Duncan B N, Stolarski R S. 2009. The governing processes and timescales of stratosphere-to-troposphere transport and its contribution to ozone in the Arctic troposphere. Atmos Chem Phys, 9: 3011–3025

    Article  Google Scholar 

  • Liang Q, Douglass A R, Duncan B N, Stolarski R S, Witte J C. 2009. The governing processes and timescales of stratosphere-to-troposphere transport and its contribution to ozone in the Arctic Troposphere. Atmos Chem Phys, 9: 3011–3025

    Article  Google Scholar 

  • Liao T, Camp C D, Yung Y L. 2004. The seasonal cycle of N2O. Geophys Res Lett, 31: L17108

    Article  Google Scholar 

  • Lin X, Wang S, Ma X, Xu G, Luo C, Li Y, Jiang G, Xie Z. 2009. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biol Biochem, 41: 718–725

    Article  Google Scholar 

  • Liu L, Greaver T L. 2009. A review of nitrogen enrichment effects on three biogenic GHGs: The CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett, 12: 1103–1117

    Article  Google Scholar 

  • MacFarling Meure C, Etheridge D, Trudinger C, Steele P, Langenfelds R, van Ommen T, Smith A, Elkins J. 2006. Law dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys Res Lett, 33: L14810

    Article  Google Scholar 

  • Mosier A R. 1994. Nitrous oxide emissions from agricultural soils. Fert Res, 37: 191–200

    Article  Google Scholar 

  • Mosier A R, Parton W J, Valentine D W, Ojima D S, Schimel D S, Delgado J A. 1996. CH4 and N2 O fluxes in the Colorado shortgrass steppe: 1. Impact of landscape and nitrogen addition. Glob Biogeochem Cycle, 10: 387–399

    Article  Google Scholar 

  • Nevison C D, Kinnison D E, Weiss R F. 2004. Stratospheric influences on the tropospheric seasonal cycles of nitrous oxide and chlorofluorocarbons. Geophys Res Lett, 31: L20103

    Article  Google Scholar 

  • Nevison C D, Mahowald N M, Weiss R F, Prinn R G. 2007. Interannual and seasonal variability in atmospheric N2O. Glob Biogeochem Cycle, 21: GB3017

    Article  Google Scholar 

  • Nevison C D, Dlugokencky E, Dutton G, Elkins J W, Fraser P, Hall B, Krummel P B, Langenfelds R L, O’Doherty S, Prinn R G, Steele L P, Weiss R F. 2011. Exploring causes of interannual variability in the seasonal cycles of tropospheric nitrous oxide. Atmos Chem Phys, 11: 3713–3730

    Article  Google Scholar 

  • Newman P A, Nash E R, Rosenfield J E. 2001. What controls the temperature of the Arctic stratosphere during the spring? J Geophys Res, 106: 19999–20010

    Article  Google Scholar 

  • Park S, Croteau P, Boering K A, Etheridge D M, Ferretti D, Fraser P J, Kim K R, Krummel P B, Langenfelds R L, van Ommen T D, Steele L P, Trudinger C M. 2012. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat Geosci, 5: 261–265

    Article  Google Scholar 

  • Pei Z Y, Hua O Y, Zhou C P, Xu X L. 2004. N2O exchange within a soil and atmosphere profile in alpine grasslands on the Qinghai-Xizang Plateau. Acta Bot Sin, 46: 20–28

    Google Scholar 

  • Peng S, Piao S, Bousquet P, Ciais P, Li B, Lin X, Tao S, Wang Z, Zhang Y, Zhou F. 2016. Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010. Atmos Chem Phys, 16: 14545–14562

    Article  Google Scholar 

  • Ping X, Jiang Z, Li C. 2011. Status and future perspectives of energy consumption and its ecological impacts in the Qinghai-Tibet region. Renew Sustain Energy Rev, 15: 514–523

    Article  Google Scholar 

  • Prinn R G, Weiss R F, Fraser P J, Simmonds P G, Cunnold D M, Alyea F N, O’Doherty S, Salameh P, Miller B R, Huang J, Wang R H J, Hartley D E, Harth C, Steele L P, Sturrock G, Midgley P M, McCulloch A. 2000. A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J Geophys Res, 105: 17751–17792

    Article  Google Scholar 

  • Randel W J, Park M, Emmons L, Kinnison D, Bernath P, Walker K A, Boone C, Pumphrey H. 2010. Asian Monsoon transport of pollution to the stratosphere. Science, 328: 611–613

    Article  Google Scholar 

  • Ravishankara A R, Daniel J S, Portmann R W. 2009. Nitrous oxide (N2 O): The dominant ozone-depleting substance emitted in the 21st century. Science, 326: 123–125

    Article  Google Scholar 

  • Ray E A, Portmann R W, Yu P, Daniel J, Montzka S A, Dutton G S, Hall B D, Moore F L, Rosenlof K H. 2020. The influence of the stratospheric Quasi-Biennial oscillation on trace gas levels at the Earth’s surface. Nat Geosci, 13: 22–27

    Article  Google Scholar 

  • Röver M, Heinemeyer O, Kaiser E A. 1998. Microbial induced nitrous oxide emissions from an arable soil during winter. Soil Biol Biochem, 30: 1859–1865

    Article  Google Scholar 

  • Saikawa E, Prinn R G, Dlugokencky E, Ishijima K, Dutton G S, Hall B D, Langenfelds R, Tohjima Y, Machida T, Manizza M, Rigby M, O’Doherty S, Patra P K, Harth C M, Weiss R F, Krummel P B, van der Schoot M, Fraser P J, Steele L P, Aoki S, Nakazawa T, Elkins J W. 2014. Global and regional emissions estimates for N2O. Atmos Chem Phys, 14: 4617–4641

    Article  Google Scholar 

  • Sirois A, Bottenheim J W. 1995. Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia. J Geophys Res, 100: 2867–2881

    Article  Google Scholar 

  • Schauffler S M, Daniel J S. 1994. On the effects of stratospheric circulation changes on trace gas trends. J Geophys Res, 99: 25747–25754

    Article  Google Scholar 

  • Škerlak B, Sprenger M, Wernli H. 2014. A global climatology of stratosphere-troposphere exchange using the ERA-Interim data set from 1979 to 2011. Atmos Chem Phys, 14: 913–937

    Article  Google Scholar 

  • Syakila A, Kroeze C. 2011. The global nitrous oxide budget revisited. Greenhous Gas Meas Manag, 1: 17–26

    Article  Google Scholar 

  • Thompson R L, Gerbig C, Rödenbeck C. 2011. A Bayesian inversion estimate of N2O emissions for western and central Europe and the assessment of aggregation errors. Atmos Chem Phys, 11: 3443–3458

    Article  Google Scholar 

  • Thompson R L, Dlugokencky E, Chevallier F, Ciais P, Dutton G, Elkins J W, Langenfelds R L, Prinn R G, Weiss R F, Tohjima Y, O’Doherty S, Krummel P B, Fraser P, Steele L P. 2013. Interannual variability in tropospheric nitrous oxide. Geophys Res Lett, 40: 4426–4431

    Article  Google Scholar 

  • Thoning K W, Tans P P, Komhyr W D. 1989. Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. J Geophys Res, 94: 8549–8565

    Article  Google Scholar 

  • Trolier M, White J W C, Tans P P, Masarie K A, Gemery P A. 1996. Monitoring the isotopic composition of atmospheric CO2: Measurements from the NOAA global air sampling network. J Geophys Res, 101: 25897–25916

    Article  Google Scholar 

  • Wan Y, Li Y, Gao Q, Duan M, Wei L. 2010. Effect of summer grazing intensity on GHG emission in the North Tibet steppe. Pratacul Sci, 27: 1–6

    Google Scholar 

  • Wang G S, Yang X X., Ren F, Zhang Z H, He J S. 2013. Non-growth season’s greenhouse gases emission and its yearly contribution from alpine meadow on Tibetan Plateau of China. Chin J appl Ecol, 32: 1994–2001

    Google Scholar 

  • Weiss R F. 1981. Determinations of carbon dioxide and methane by dual catalyst flame ionization chromatography and nitrous oxide by electron capture chromatography. J Chromatogr Sci, 19: 611–616

    Article  Google Scholar 

  • WMO. 2022. Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2021. Geneva: World Meteorological Organization. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2021

    Google Scholar 

  • Xiong H, Lin Y, Liu S, Zang K, Chen Y, Liu P, Liang M, Jiang K, Qing X, Qiu S, Hong H, Li J, Fang S. 2022. Variations of atmospheric CO concentration from 2004 to 2019 at the Mt. Waliguan station in China. Atmos Res, 271: 106060

    Article  Google Scholar 

  • Yao Z, Wu X, Wolf B, Dannenmann M, Butterbach-Bahl K, Brüggemann N, Chen W, Zheng X. 2010. Soil-atmosphere exchange potential of NO and N2 O in different land use types of Inner Mongolia as affected by soil temperature, soil moisture, freeze-thaw, and drying-wetting events. J Geophys Res, 115: D17116

    Article  Google Scholar 

  • Zhang D, Tang J, Shi G, Nakazawa T, Aoki S, Sugawara S, Wen M, Morimoto S, Patra P K, Hayasaka T, Saeki T. 2008. Temporal and spatial variations of the atmospheric CO2 concentration in China. Geophys Res Lett, 35: L03801

    Article  Google Scholar 

  • Zhang F, Qi J, Li F M, Li C S, Li C B. 2010. Quantifying nitrous oxide emissions from Chinese grasslands with a process-based model. Biogeosciences, 7: 2039–2050

    Article  Google Scholar 

  • Zhou F, Shang Z, Ciais P, Tao S, Piao S, Raymond P, He C, Li B, Wang R, Wang X, Peng S, Zeng Z, Chen H, Ying N, Hou X, Xu P. 2014. A new high-resolution N2 O emission inventory for China in 2008. Environ Sci Technol, 48: 8538–8547

    Article  Google Scholar 

  • Zhou L, Tang J, Wen Y, Li J, Yan P, Zhang X. 2003. The impact of local winds and long-range transport on the continuous carbon dioxide record at Mount Waliguan, China. Tellus B-Chem Phys Meteor, 55: 145–158

    Article  Google Scholar 

  • Zhou L X, Worthy D E J, Lang P M, Ernst M K, Zhang X C, Wen Y P, Li J L. 2004. Ten years of atmospheric methane observations at a high elevation site in western China. Atmos Environ, 38: 7041–7054

    Article  Google Scholar 

Download references

Acknowledgements

We thank to the staff at Mt. Waliguan station who have contributed to the system installation and maintenance. We invited them to be the co-authors which they declined. We express our thanks to NOAA GMD CCGG group for their valuable suggestions to our manuscript and their work for conducting the sample analysis and delivery. Thanks also goes to MHD and MLO station for providing the data, to World Data Center for Greenhouse Gases for data management. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41730103 & 41805129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangxi Fang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Fang, S., Liu, L. et al. Characteristics of atmospheric nitrous oxide observed at Mt. Waliguan GAW global station in the inland Eurasia during eighteen years. Sci. China Earth Sci. 67, 92–104 (2024). https://doi.org/10.1007/s11430-023-1197-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1197-7

Keywords

Navigation