Skip to main content
Log in

Origin of the DUPAL anomaly in the Tethyan mantle domain and its geodynamic significance

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Mantle heterogeneity has revealed systematic differences in Pb isotopic compositions between the Indian Ocean-South Atlantic mantle in the Southern Hemisphere and the Pacific Ocean-North Atlantic mantle in the Northern Hemisphere. This large-scale difference in mantle isotopes in the Southern Hemisphere is known as the DUPAL anomaly, but its origin remains controversial. Based on a systematic review of the Nd-Pb isotopic evolution of the Tethyan mantle domain, this study identified the long-term presence of the DUPAL anomaly in this domain since the early Paleozoic, characterized by long-term and high mantle thorium/uranium (Th/U) ratios. By comparing the Nd-Pb isotopic compositions of the Tethyan mantle domain with the Panthalassic-Pacific mantle domain (the Paleo-Asian, Paleo-Pacific, and modern Pacific oceans), it is shown that the mantle initially had low Th/U features due to early Earth crust-mantle differentiation, with the crust having high Th/U ratios. As such, the mantle initially had uniformly low Th/U ratios that were inherited throughout the Panthalassic-Pacific mantle domain. However, the plate tectonics and continental collisions in the Tethyan domain affected its characteristics, leading to the long-term and large-scale DUPAL anomaly. During the opening of and subduction in the Tethys Ocean, Gondwanaland fragmentation and frequent continent-continent collisions led to long-term and extensive crust-mantle interactions and the continuous input of high-Th/U mantle sources, which thus modified the mantle. This process formed not only the unique DUPAL anomaly in the Tethyan mantle domain, but also the Tethyan tectonic domain dominated by continental collisions. Moreover, the high DUPAL anomaly in the Proto- and Paleo-Tethyan mantle domains records the effects of mantle plumes, which might have occurred primarily during the formation of the Proto- and Paleo-Tethys oceans during the early evolution of the Tethyan domain. Therefore, the inherent coupling of mantle domain properties and plate tectonic mechanisms provides important insights for understanding plate tectonics and geodynamic processes in the Tethyan domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres M, Blichert-Toft J, Schilling J G. 2004. Nature of the depleted upper mantle beneath the Atlantic: Evidence from Hf isotopes in normal mid-ocean ridge basalts from 79°N to 55°S. Earth Planet Sci Lett, 225: 89–103

    Article  Google Scholar 

  • Bian Q T, Li D H, Pospelov I, Yin L M, Li H S, Zhao D S, Chang C F, Luo X Q, Gao S L, Astrakhantsev O, Chamov N. 2004. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. J Asian Earth Sci, 23: 577–596

    Article  Google Scholar 

  • Burke K, Steinberger B, Torsvik T H, Smethurst M A. 2008. Plume Generation Zones at the margins of Large Low Shear Velocity Provinces on the core-mantle boundary. Earth Planet Sci Lett, 265: 49–60

    Article  Google Scholar 

  • Campbell I H. 2007. Testing the plume theory. Chem Geol, 241: 153–176

    Article  Google Scholar 

  • Campbell I H, Griffiths R W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet Sci Lett, 99: 79–93

    Article  Google Scholar 

  • Castillo P. 1988. The Dupal anomaly as a trace of the upwelling lower mantle. Nature, 336: 667–670

    Article  Google Scholar 

  • Cawood P A, Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Sci Rev, 82: 217–256

    Article  Google Scholar 

  • Cawood P A, Kröner A, Collins W J, Kusky T M, Mooney W D, Windley B F. 2009. Accretionary orogens through Earth history. Geol Soc Lond Spec Publ, 318: 1–36

    Article  Google Scholar 

  • Çelik Ö F, Chiaradia M. 2008. Geochemical and petrological aspects of dike intrusions in the Lycian ophiolites (SW Turkey): A case study for the dike emplacement along the Tauride Belt Ophiolites. Int J Earth Sci-Geol Rundsch, 97: 1151–1164

    Article  Google Scholar 

  • Çelik Ö F, Chiaradia M, Marzoli A, Billor Z, Marschik R. 2013. The Eldivan ophiolite and volcanic rocks in the İzmir-Ankara-Erzincan suture zone, Northern Turkey: Geochronology, whole-rock geochemical and Nd-Sr-Pb isotope characteristics. Lithos, 172–173: 31–46

    Article  Google Scholar 

  • Chauvel C, Blichert-Toft J. 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet Sci Lett, 190: 137–151

    Article  Google Scholar 

  • Chen J H, Pallister J S. 1981. Lead isotopic studies of the Samail ophiolite, Oman. J Geophys Res, 86: 2699–2708

    Article  Google Scholar 

  • Chen L, Sun Y, Pei X, Feng T, Zhang G. 2004. Comparison of eastern paleo-Tethyan ophiolites and its geodynamic significance—Evidence from Dur’ngoi ophiolite. Sci China Ser D-Earth Sci, 47: 378

    Article  Google Scholar 

  • Chung S L, Sun S S, Crawford A. 2001. Indian Ocean type convecting mantle underlies East Asia: A consequence of Gondwana breakup and reassembly? Western Pacific Earth Sci, 1: 1–18

    Google Scholar 

  • Class C, le Roex A. 2011. South Atlantic DUPAL anomaly—Dynamic and compositional evidence against a recent shallow origin. Earth Planet Sci Lett, 305: 92–102

    Article  Google Scholar 

  • Collins W J. 2003. Slab pull, mantle convection, and Pangaean assembly and dispersal. Earth Planet Sci Lett, 205: 225–237

    Article  Google Scholar 

  • Collins W J, Belousova E A, Kemp A I S, Murphy J B. 2011. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nat Geosci, 4: 333–337

    Article  Google Scholar 

  • Condie K C. 2000. Episodic continental growth models: Afterthoughts and extensions. Tectonophysics, 322: 153–162

    Article  Google Scholar 

  • Condie K C. 1998. Episodic continental growth and supercontinents: A mantle avalanche connection? Earth Planet Sci Lett, 163: 97–108

    Article  Google Scholar 

  • Douglass J, Schilling J G. 2000. Systematics of three-component, pseudobinary mixing lines in 2D isotope ratio space representations and implications for mantle plume-ridge interaction. Chem Geol, 163: 1–23

    Article  Google Scholar 

  • Douglass J, Schilling J G, Fontignie D. 1999. Plume-ridge interactions of the Discovery and Shona mantle plumes with the southern Mid-Atlantic Ridge (40°–55°S). J Geophys Res, 104: 2941–2962

    Article  Google Scholar 

  • Dupré B, Allègre C J. 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303: 142–146

    Article  Google Scholar 

  • Escrig S, Capmas F, Dupré B, Allègre C J. 2004. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-oceanridge basalts. Nature, 431: 59–63

    Article  Google Scholar 

  • Galer S J G, O’Nions R K. 1985. Residence time of thorium, uranium and lead in the mantle with implications for mantle convection. Nature, 316: 778–782

    Article  Google Scholar 

  • Garnero E J, McNamara A K. 2008. Structure and dynamics of Earth’s lower mantle. Science, 320: 626–628

    Article  Google Scholar 

  • Geldmacher J, Hoernle K, Klügel A, van den Bogaard P, Bindeman I. 2008. Geochemistry of a new enriched mantle type locality in the northern hemisphere: Implications for the origin of the EM-I source. Earth Planet Sci Lett, 265: 167–182

    Article  Google Scholar 

  • Godard M, Bosch D, Einaudi F. 2006. A MORB source for low-Ti magmatism in the Semail ophiolite. Chem Geol, 234: 58–78

    Article  Google Scholar 

  • Goldstein S L, Soffer G, Langmuir C H, Lehnert K A, Graham D W, Michael P J. 2008. Origin of a ‘Southern Hemisphere’ geochemical signature in the Arctic upper mantle. Nature, 453: 89–93

    Article  Google Scholar 

  • Göpel C, Allègre C J, Xu R H. 1984. Lead isotopic study of the Xigaze ophiolite (Tibet): The problem of the relationship between magmatites (gabbros, dolerites, lavas) and tectonites (harzburgites). Earth Planet Sci Lett, 69: 301–310

    Article  Google Scholar 

  • Hamelin B, Dupré B, Allègre C J. 1984. The lead isotope systematics of ophiolite complexes. Earth Planet Sci Lett, 67: 351–366

    Article  Google Scholar 

  • Hamelin B, Dupré B, Brévart O, Allègre C J. 1988. Metallogenesis at paleo-spreading centers: Lead isotopes in sulfides, rocks and sediments from the Troodos ophiolite (Cyprus). Chem Geol, 68: 229–238

    Article  Google Scholar 

  • Hanan B B, Blichert-Toft J, Pyle D G, Christie D M. 2004. Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature, 432: 653

    Article  Google Scholar 

  • Hart S R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet Sci Lett, 90: 273–296

    Article  Google Scholar 

  • Hart S R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309: 753–757

    Article  Google Scholar 

  • Hart S R, Hauri E H, Oschmann L A, Whitehead J A. 1992. Mantle plumes and entrainment: Isotopic evidence. Science, 256: 517–520

    Article  Google Scholar 

  • Hauff F, Hoernle K, Schmidt A. 2003. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochem Geophys Geosyst, 4: 2002GC000421

    Article  Google Scholar 

  • Hawkesworth C J, Mantovani M S M, Taylor P N, Palacz Z. 1986. Evidence from the Parana of south Brazil for a continental contribution to Dupal basalts. Nature, 322: 356–359

    Article  Google Scholar 

  • Hoernle K, Rohde J, Hauff F, Garbe-Schönberg D, Homrighausen S, Werner R, Morgan J P. 2015. How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot. Nat Commun, 6: 7799

    Article  Google Scholar 

  • Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219–229

    Article  Google Scholar 

  • Hou Q Y, Zhao Z D, Zhang B R, Zhang H F, Zhang L, Chen Y L. 2006a. On the boundary of Tethyan tectonic domain on northeastern margin of the Tibetan Plateau (in Chinese with English Abstract). Acta Petrol Sin, 22: 567–577

    Google Scholar 

  • Hou Q Y, Zhao Z D, Zhang H F, Zhang B R, Chen Y L. 2005. Indian Ocean-MORB-type isotopic characteristics of Yushigou ophiolite in North Qilian Orogenic Belt and its implications (in Chinese). Sci China Earth Sci, 35: 710–719

    Google Scholar 

  • Hou Q Y, Zhao Z D, Zhang H F, Zhang B R, Zhang L, Chen Y L. 2006b. Discussion on the tectonic affinity of ancient oceanic mantle in Western Qinling-Songpan continental tectonic node, China: From elemental and Sr-Nd-Pb isotopic evidences (in Chinese with English Abstract). Acta Petrol Sin, 12: 2901–2909

    Google Scholar 

  • Hu P Y, Li C, Wu Y W, Xie C M, Wang M, Li J. 2014. Opening of the Longmu Co-Shuanghu-Lancangjiang ocean: Constraints from plagiogranites (in Chinese with English Abstract). Chin Sci Bull, 59: 1992–2003

    Article  Google Scholar 

  • Jackson M G, Becker T W, Konter J G. 2018. Geochemistry and distribution of recycled domains in the mantle inferred from Nd and Pb isotopes in oceanic hot spots: Implications for storage in the large low shear wave velocity provinces. Geochem Geophys Geosyst, 19: 3496–3519

    Article  Google Scholar 

  • Janney P E, Le Roex A P, Carlson R W. 2005. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the Central Southwest Indian Ridge (13°E to 47°E). J Petrol, 46: 2427–2464

    Article  Google Scholar 

  • Kempton P D, Pearce J A, Barry T L, Fitton J G, Langmuir C, Christie D M. 2002. Sr-Nd-Pb-Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic discordance and origin of the Indian MORB source. Geochem Geophys Geosyst, 3: 1–35

    Article  Google Scholar 

  • Lawver L A, Grantz A, Gahagan L M. 2002. Plate kinematic evolution of the present Arctic region since the Ordovician. Geol Soc Am Spec Paper, 360: 333–358

    Google Scholar 

  • le Roux P J, le Roex A P, Schilling J G, Shimizu N, Perkins W W, Pearce N J G. 2002. Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: Trace element evidence for contamination of ambient asthenospheric mantle. Earth Planet Sci Lett, 203: 479–498

    Article  Google Scholar 

  • Li Z X, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res, 160: 179–210

    Article  Google Scholar 

  • Li Z X, Mitchell R N, Spencer C J, Ernst R, Pisarevsky S, Kirscher U, Murphy J B. 2019. Decoding Earth’s rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Res, 323: 1–5

    Article  Google Scholar 

  • Li Z X, Zhong S. 2009. Supercontinent-superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics. Phys Earth Planet Inter, 176: 143–156

    Article  Google Scholar 

  • Liu X, Xu J, Xiao W, Castillo P R, Shi Y, Wang S, Huo Q, Feng Z. 2015. The boundary between the Central Asian Orogenic belt and Tethyan tectonic domain deduced from Pb isotopic data. J Asian Earth Sci, 113: 7–15

    Article  Google Scholar 

  • Liu X, Xu J F, Castillo P R, Xiao W, Shi Y, Zhang Z, Wang X C, Ao S, Wang B, Hu R, Shi X, Yu H, Liu P, Song Y. 2021. Long-lived low Th/U Pacific-type isotopic mantle domain: Constraints from Nd and Pb isotopes of the Paleo-Asian Ocean mantle. Earth Planet Sci Lett, 567: 117006

    Article  Google Scholar 

  • Lugmair G, Carlson R. 1978. The Sm-Nd history of KREEP. In: Proceedings of the 9th Lunar and Planetary Science Conference. Houston, 689–704

  • Mahoney J J, Frei R, Tejada M L G, Mo X X, Leat P T, NaGler T F. 1998. Tracing the Indian ocean mantle domain through time: Isotopic results from old west Indian, East Tethyan, and south Pacific seafloor. J Petrol, 39: 1285–1306

    Article  Google Scholar 

  • Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J Asian Earth Sci, 66: 1–33

    Article  Google Scholar 

  • Moghadam H S, Corfu F, Chiaradia M, Stern R J, Ghorbani G. 2014a. Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data. Lithos, 210–211: 224–241

    Article  Google Scholar 

  • Moghadam H S, Li X H, Ling X X, Stern R J, Khedr M Z, Chiaradia M, Ghorbani G, Arai S, Tamura A. 2015. Devonian to Permian evolution of the Paleo-Tethys Ocean: New evidence from U-Pb zircon dating and Sr-Nd-Pb isotopes of the Darrehanjir-Mashhad “ophiolites”, NE Iran. Gondwana Res, 28: 781–799

    Article  Google Scholar 

  • Moghadam H S, Zaki Khedr M, Chiaradia M, Stern R J, Bakhshizad F, Arai S, Ottley C J, Tamura A. 2014b. Supra-subduction zone magmatism of the Neyriz ophiolite, Iran: Constraints from geochemistry and Sr-Nd-Pb isotopes. Int Geol Rev, 56: 1395–1412

    Article  Google Scholar 

  • Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42–43

    Article  Google Scholar 

  • Niu X L, Zhao Z D, Mo X X, DePaolo D J, Dong G C, Zhang S Q, Zhu D C, Guo T Y. 2006. Elemental and Sr-Nd-Pb isotopic geochemistry for basic rocks from Decun-Angren ophiolites in Xigaze area, Tibet: Implications for the characteristics of the Tethyan upper mantle domain (in Chinese with English Abstract). Acta Petrol Sin, 22: 2875–2888

    Google Scholar 

  • Osozawa S, Shinjo R, Lo C H, Jahn B, Hoang N, Sasaki M, Ishikawa K, Kano H, Hoshi H, Xenophontos C, Wakabayashi J. 2012. Geochemistry and geochronology of the Troodos ophiolite: An SSZ ophiolite generated by subduction initiation and an extended episode of ridge subduction? Lithosphere, 4: 497–510

    Article  Google Scholar 

  • Rautenschlein M, Jenner G A, Hertogen J, Hofmann A W, Kerrich R, Schmincke H U, White W M. 1985. Isotopic and trace element composition of volcanic glasses from the Akaki Canyon, Cyprus: Implications for the origin of the Troodos ophiolite. Earth Planet Sci Lett, 75: 369–383

    Article  Google Scholar 

  • Regelous M, Niu Y, Abouchami W, Castillo P R. 2009. Shallow origin for South Atlantic Dupal anomaly from lower continental crust: Geochemical evidence from the Mid-Atlantic Ridge at 26°S. Lithos, 112: 57–72

    Article  Google Scholar 

  • Rehkämper M, Hofmann A W. 1997. Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet Sci Lett, 147: 93–106

    Article  Google Scholar 

  • Rohde J, Hoernle K, Hauff F, Werner R, O’Connor J, Class C, GarbeSchonberg D, Jokat W. 2013. 70 Ma chemical zonation of the Tristan-Gough hotspot track. Geology, 41: 335–338

    Article  Google Scholar 

  • Romanowicz B, Gung Y. 2002. Superplumes from the core-mantle boundary to the lithosphere: Implications for heat flux. Science, 296: 513–516

    Article  Google Scholar 

  • Schwindrofska A, Hoernle K, Hauff F, van den Bogaard P, Werner R, Garbe-Schönberg D. 2016. Origin of enriched components in the South Atlantic: Evidence from 40 Ma geochemical zonation of the Discovery Seamounts. Earth Planet Sci Lett, 441: 167–177

    Article  Google Scholar 

  • Scotese C R. 2009. Late Proterozoic plate tectonics and palaeogeography: A tale of two supercontinents, Rodinia and Pannotia. Geol Soc Lond Spec Publ, 326: 67–83

    Article  Google Scholar 

  • Sengör A M C. 1987. Tectonics of the Tethysides: Orogenic collage development in a collisional setting. Annu Rev Earth Planet Sci, 15: 213–244

    Article  Google Scholar 

  • Stampfli G M. 2000. Tethyan oceans. Geol Soc Lond Spec Publ, 173: 1–23

    Article  Google Scholar 

  • Stampfli G M, Borel G D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett, 196: 17–33

    Article  Google Scholar 

  • Stampfli G M, Hochard C, Vérard C, Wilhem C, von Raumer J. 2013. The formation of Pangea. Tectonophysics, 593: 1–19

    Article  Google Scholar 

  • Storey B C. 1995. The role of mantle plumes in continental breakup: Case histories from Gondwanaland. Nature, 377: 301–308

    Article  Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C. 2000. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol, 168: 279–281

    Article  Google Scholar 

  • Tatsumoto M, Knight R J, Allègre C J. 1973. Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206. Science, 180: 1279–1283

    Article  Google Scholar 

  • Thirlwall M F. 2000. Inter-laboratory and other errors in Pb isotope analyses investigated using a 207Pb-204Pb double spike. Chem Geol, 163: 299–322

    Article  Google Scholar 

  • Todt W, Cliff R, Hanser A, Hofmann A. 1996. Evaluation of a 202Pb-205Pb double spike for high-Precision lead isotope analysis. In: Basu A, Hart S, eds. Earth Processes: Reading the Isotopic Code, Volume 95. Washington, DC: American Geophysical Union. 429–437

    Google Scholar 

  • Torsvik T H, Cocks L R M. 2013. Gondwana from top to base in space and time. Gondwana Res, 24: 999–1030

    Article  Google Scholar 

  • Torsvik T H, Cocks L R M. 2009. The Lower Palaeozoic palaeogeographical evolution of the northeastern and eastern peri-Gondwanan margin from Turkey to New Zealand. Geol Soc Lond Spec Publ, 325: 3–21

    Article  Google Scholar 

  • Torsvik T H, van der Voo R, Doubrovine P V, Burke K, Steinberger B, Ashwal L D, Trønnes R G, Webb S J, Bull A L. 2014. Deep mantle structure as a reference frame for movements in and on the Earth. Proc Natl Acad Sci USA, 111: 8735–8740

    Article  Google Scholar 

  • Torsvik T H, Van der Voo R, Preeden U, Mac Niocaill C, Steinberger B, Doubrovine P V, van Hinsbergen D J J, Domeier M, Gaina C, Tohver E, Meert J G, McCausland P J A, Cocks L R M. 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci Rev, 114: 325–368

    Article  Google Scholar 

  • Turner S, Hawkesworth C, Gallagher K, Stewart K, Peate D, Mantovani M. 1996. Mantle plumes, flood basalts, and thermal models for melt generation beneath continents: Assessment of a conductive heating model and application to the Paraná. J Geophys Res, 101: 11503–11518

    Article  Google Scholar 

  • Wan B, Wu FY, Chen L, Zhao L, Liang X F, Xiao W J, Zhu R X. 2019. Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Sci China Earth Sci, 62: 2005–2016

    Article  Google Scholar 

  • Wang B D, Wang L Q, Pan G T, Yin F G, Wang D B, Tang Y. 2013. U-Pb zircon dating of Early Paleozoic gabbro from the Nantinghe ophiolite in the Changning-Menglian suture zone and its geological implication. Chin Sci Bull, 58: 920–930

    Article  Google Scholar 

  • Wang B D, Wang L Q, Wang D B, Yin F G, He J, Peng Z M, Yan G C. 2018. Tectonic Evolution of the Changning-Menglian Proto-Paleo Tethys Ocean in the Sanjiang Area, Southwestern China (in Chinese with English Abstract). Earth Sci, 43: 2527–2550

    Google Scholar 

  • Weis D, Frey F A. 1996. Role of the Kerguelen Plume in generating the eastern Indian Ocean seafloor. J Geophys Res, 101: 13831–13849

    Article  Google Scholar 

  • White W M. 2015. Isotopes, DUPAL, LLSVPs, and anekantavada. Chem Geol, 419: 10–28

    Article  Google Scholar 

  • White W M. 1993. U/Pb in MORB and open system evolution of the depleted mantle. Earth Planet Sci Lett, 115: 211–226

    Article  Google Scholar 

  • Windley B F, Alexeiev D, Xiao W, Kroner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc, 164: 31–47

    Article  Google Scholar 

  • Wu F Y, Wan B, Zhao L, Xiao W J, Zhu R X. 2020. Tethyan geodynamics. Acta Petrol Sin, 36: 1627–1674

    Article  Google Scholar 

  • Xiao W, Windley B F, Sun S, Li J, Huang B, Han C, Yuan C, Sun M, Chen H. 2015. A tale of amalgamation of three Permo-Triassic collage systems in central Asia: Oroclines, sutures, and terminal accretion. Annu Rev Earth Planet Sci, 43: 477–507

    Article  Google Scholar 

  • Xu J, Castillo P R, Li X, Yu X, Zhang B, Han Y. 2002. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: Implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean. Earth Planet Sci Lett, 198: 323–337

    Article  Google Scholar 

  • Xu J F, Castillo P R. 2004. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere: Implications for the origin of the Indian Ocean mantle domain. Tectonophysics, 393: 9–27

    Article  Google Scholar 

  • Xu J F, Han Y W. 1996. High radiogenic Pb-isotope composition of ancient MORB-type rocks from Qinling area: Evidence for the presence of Tethyan-type oceanic mantle (in Chinese). Sci China (Ser D) Earth Sci, 26(Suppl): 34–41

    Google Scholar 

  • Zhai Q, Jahn B, Su L, Wang J, Mo X X, Lee H, Wang K, Tang S. 2013a. Triassic arc magmatism in the Qiangtang area, northern Tibet: Zircon U-Pb ages, geochemical and Sr-Nd-Hf isotopic characteristics, and tectonic implications. J Asian Earth Sci, 63: 162–178

    Article  Google Scholar 

  • Zhai Q, Jahn B, Wang J, Hu P, Chung S, Lee H, Tang S, Tang Y. 2016. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau. Geol Soc Am Bull, 128: 355–373

    Article  Google Scholar 

  • Zhai Q, Jahn B, Wang J, Su L, Mo X X, Wang K, Tang S, Lee H. 2013b. The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet: SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics. Lithos, 168–169: 186–199

    Article  Google Scholar 

  • Zhai Q G, Wang J, Li C, Su L. 2010. SHRIMP U-Pb dating and Hf isotopic analyses of Middle Ordovician meta-cumulate gabbro in central Qiangtang, northern Tibetan Plateau. Sci China Earth Sci, 53: 657–664

    Article  Google Scholar 

  • Zhang Q, Wang C Y, Liu D, Jian P, Qian Q, Zhou G, Robinson P T. 2008. A brief review of ophiolites in China. J Asian Earth Sci, 32: 308–324

    Article  Google Scholar 

  • Zhang S Q, Mahoney J J, Mo X X, Ghazi A M, Milani L, Crawford A J, Guo T Y, Zhao Z D. 2005. Evidence for a widespread Tethyan upper mantle with Indian-Ocean-type isotopic characteristics. J Petrol, 46: 829–858

    Article  Google Scholar 

  • Zindler A, Hart S. 1986. Chemical geodynamics. Annu Rev Earth Planet Sci, 14: 493–571

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 92055208), the Guangxi Science Innovation Base Construction Foundation (Grant No. Guike-ZY21195031), and the Fifth Bagui Scholar Innovation Project of Guangxi Province (to Xu Jifeng). Support was also received from the Xinjiang Tianchi Distinguished Expert grant awarded to Xijun LIU and the Guangxi Key Mineral Resources Deep Exploration Talent Highland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijun Liu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xu, J., Xiao, W. et al. Origin of the DUPAL anomaly in the Tethyan mantle domain and its geodynamic significance. Sci. China Earth Sci. 66, 2712–2727 (2023). https://doi.org/10.1007/s11430-023-1193-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1193-6

Keywords

Navigation