Skip to main content
Log in

The effect of iron on the preservation of organic carbon in marine sediments and its implications for carbon sequestration

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Marine sediments are the most significant reservoir of organic carbon (OC) in Earth’s surface system. Iron, a crucial component of the marine biogeochemical cycle, has a considerable impact on marine ecology and carbon cycling. Understanding the effect of iron on the preservation of OC in marine sediments is essential for comprehending biogeochemical processes of carbon and climate change. This review summarizes the methods for characterizing the content and structure of iron-bound OC and explores the influencing mechanism of iron on OC preservation in marine sediments from two aspects: the selective preservation of OC by reactive iron minerals (iron oxides and iron sulfides) and iron redox processes. The selective preservation of sedimentary OC is influenced by different types of reactive iron minerals, OC reactivity, and functional groups. The iron redox process has dual effects on the preservation and degradation of OC. By considering sedimentary records of iron-bound OC across diverse marine environments, the role of iron in long-term preservation of OC and its significance for carbon sequestration are illustrated. Future research should focus on identifying effective methods for extracting reactive iron, the effect of diverse functional groups and marine sedimentary environments on the selective preservation of OC, and the mediation of micro-organisms. Such work will help elucidate the influencing mechanisms of iron on the long-term burial and preservation of OC and explore its potential application in marine carbon sequestration to maximize its role in achieving carbon neutrality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhikari D, Poulson S R, Sumaila S, Dynes J J, McBeth J M, Yang Y. 2016. Asynchronous reductive release of iron and organic carbon from hematite-humic acid complexes. Chem Geol, 430: 13–20

    Google Scholar 

  • Adhikari D, Yang Y. 2015. Selective stabilization of aliphatic organic carbon by iron oxide. Sci Rep, 5: 11214

    Google Scholar 

  • Aller R C. 2004. Conceptual models of early diagenetic processes: The muddy seafloor as an unsteady, batch reactor. J Mar Res, 62: 815–835

    Google Scholar 

  • Anbar A D, Knoll A H. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297: 1137–1142

    Google Scholar 

  • Arnarson T S, Keil R G. 2000. Mechanisms of pore water organic matter adsorption to montmorillonite. Mar Chem, 71: 309–320

    Google Scholar 

  • Asaoka S, Jadoon W A, Umehara A, Takeda K, Otani S, Ohno M, Fujitake N, Sakugawa H, Okamura H. 2020. Organic matter degradation characteristics of coastal marine sediments collected from the Seto Inland Sea, Japan. Mar Chem, 225: 103854

    Google Scholar 

  • Baas Becking L G M, Moore D. 1959. The relation between iron and organic matter in sediments. Sedim Petrol, 29: 454–458

    Google Scholar 

  • Bao Y, Bolan N S, Lai J, Wang Y, Jin X, Kirkham M B, Wu X, Fang Z, Zhang Y, Wang H. 2021. Interactions between organic matter and Fe (hydr)oxides and their influences on immobilization and remobilization of metal(loid)s: A review. Crit Rev Environ Sci Tech, 52: 4016–4037

    Google Scholar 

  • Barber A, Brandes J, Leri A, Lalonde K, Balind K, Wirick S, Wang J, Gélinas Y. 2017. Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron. Sci Rep, 7: 366

    Google Scholar 

  • Barber A, Lalonde K, Mucci A, Gélinas Y. 2014. The role of iron in the diagenesis of organic carbon and nitrogen in sediments: A long-term incubation experiment. Mar Chem, 162: 1–9

    Google Scholar 

  • Berner R A. 1984. Sedimentary pyrite formation: an update. Geochim Cosmochim Acta, 48: 605–615

    Google Scholar 

  • Berner R A. 2003. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature, 426: 323–326

    Google Scholar 

  • Bianchi T S. 2011. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proc Natl Acad Sci USA, 108: 19473–19481

    Google Scholar 

  • Bianchi T S, Cui X, Blair N E, Burdige D J, Eglinton T I, Galy V. 2018. Centers of organic carbon burial and oxidation at the land-ocean interface. Org Geochem, 115: 138–155

    Google Scholar 

  • Blair N E, Aller R C. 2012. The fate of terrestrial organic carbon in the marine environment. Annu Rev Mar Sci, 4: 401–423

    Google Scholar 

  • Bolney R, Grosch M, Winkler M, van Slageren J, Weigand W, Robl C. 2021. Mackinawite formation from elemental iron and sulfur. RSC Adv, 11: 32464–32475

    Google Scholar 

  • Boudot J P, Bel Hadj Brahim A, Steiman R, Seigle-Murandi F. 1989. Biodegradation of synthetic organo-metallic complexes of iron and aluminium with selected metal to carbon ratios. Soil Biol Biochem, 21: 961–966

    Google Scholar 

  • Burdige D J. 1993. The biogeochemistry of manganese and iron reduction in marine sediments. Earth-Sci Rev, 35: 249–284

    Google Scholar 

  • Burdige D J. 2007. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev, 107: 467–485

    Google Scholar 

  • Canfield D E, Jørgensen B B, Fossing H, Glud R, Gundersen J, Ramsing N B, Thamdrup B, Hansen J W, Nielsen L P, Hall P O J. 1993. Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol, 113: 27–40

    Google Scholar 

  • Charette M A, Sholkovitz E R. 2002. Oxidative precipitation of ground-water-derived ferrous iron in the subterranean estuary of a coastal bay. Geophys Res Lett, 29:85-1–85-4

    Google Scholar 

  • Chen C, Dynes J J, Wang J, Sparks D L. 2014. Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environ Sci Technol, 48: 13751–13759

    Google Scholar 

  • Chen C, Hall S J, Coward E, Thompson A. 2020. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nat Commun, 11: 2255

    Google Scholar 

  • Chen C, Sparks D L. 2018. Fe(II)-induced mineral transformation of fer-rihydrite-organic matter adsorption and co-precipitation complexes in the absence and presence of As(III). ACS Earth Space Chem, 2: 1095–1101

    Google Scholar 

  • Chen C, Thompson A. 2021. The influence of native soil organic matter and minerals on ferrous iron oxidation. Geochim Cosmochim Acta, 292: 254–270

    Google Scholar 

  • Cismasu A C, Williams K H, Nico P S. 2016. Iron and carbon dynamics during aging and reductive transformation of biogenic ferrihydrite. Environ Sci Technol, 50: 25–35

    Google Scholar 

  • Cornell R M, Schwertmann U. 1979. Influence of organic anions on the crystallization of ferrihydrite. Clays Clay Miner, 27: 402–410

    Google Scholar 

  • Cui X, Mucci A, Bianchi T S, He D, Vaughn D, Williams E K, Wang C, Smeaton C, Koziorowska-Makuch K, Faust J C, Plante A F, Rosenheim B E. 2022. Global fjords as transitory reservoirs oflabile organic carbon modulated by organo-mineral interactions. Sci Adv, 8: eadd0610

    Google Scholar 

  • Curti L, Moore O W, Babakhani P, Xiao K Q, Woulds C, Bray AW, Fisher B J, Kazemian M, Kaulich B, Peacock C L. 2021. Carboxyl-richness controls organic carbon preservation during coprecipitation with iron (oxyhydr)oxides in the natural environment. Commun Earth Environ, 2: 1–3

    Google Scholar 

  • Daugherty E E, Gilbert B, Nico P S, Borch T. 2017. Complexation and redox buffering of Iron(II) by dissolved organic matter. Environ Sci Technol, 51: 11096–11104

    Google Scholar 

  • Davis J A. 1982. Adsorption of natural dissolved organic matter at the oxide/water interface. Geochim Cosmochim Acta, 46: 2381–2393

    Google Scholar 

  • Dicen G P, Navarrete I A, Rallos R V, Salmo Iii S G, Garcia M C A. 2019. The role of reactive iron in long-term carbon sequestration in mangrove sediments. J Soils Sedim, 19: 501–510

    Google Scholar 

  • Eglinton T I. 2012. A rusty carbon sink. Nature, 483: 165–166

    Google Scholar 

  • Eusterhues K, Neidhardt J, Hädrich A, Küsel K, Totsche K U. 2014. Biodegradation of ferrihydrite-associated organic matter. Biogeochemistry, 119: 45–50

    Google Scholar 

  • Eusterhues K, Rennert T, Knicker H, Kögel-Knabner I, Totsche K U, Schwertmann U. 2011. Fractionation of organic matter due to reaction with ferrihydrite: Coprecipitation versus adsorption. Environ Sci Technol, 45: 527–533

    Google Scholar 

  • Eusterhues K, Wagner F E, Häusler W, Hanzlik M, Knicker H, Totsche K U, Kögel-Knabner I, Schwertmann U. 2008. Characterization of ferri-hydrite-soil organic matter coprecipitates by X-ray diffraction and Mössbauer spectroscopy. Environ Sci Technol, 42: 7891–7897

    Google Scholar 

  • Evanko C R, Dzombak D A. 1998. Influence of structural features on sorption of NOM-analogue organic acids to goethite. Environ Sci Technol, 32: 2846–2855

    Google Scholar 

  • Evans L T, Russell E W. 1959. The adsorption ofhumic and fulvic acids by clays. J Soil Sci, 10: 119–132

    Google Scholar 

  • Falkowski P, Scholes R J, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie F T, Moore III B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W. 2000. The global carbon cycle: A test of our knowledge of earth as a system. Science, 290: 291–296

    Google Scholar 

  • Faust J C, Ascough P, Hilton R G, Stevenson M A, Hendry K R, März C. 2023. New evidence for preservation of contemporary marine organic carbon by iron in Arctic shelf sediments. Environ Res Lett, 18: 014006

    Google Scholar 

  • Faust J C, Stevenson M A, Abbott G D, Knies J, Tessin A, Mannion I, Ford A, Hilton R, Peakall J, März C. 2020. Does Arctic warming reduce preservation of organic matter in Barents Sea sediments? Phil Trans R Soc A, 378: 20190364

    Google Scholar 

  • Faust J C, Tessin A, Fisher B J, Zindorf M, Papadaki S, Hendry K R, Doyle K A, März C. 2021. Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments. Nat Commun, 12: 1–9

    Google Scholar 

  • Filius J D, Lumsdon D G, Meeussen J C L, Hiemstra T, Van Riemsdijk W H. 2000. Adsorption of fulvic acid on goethite. Geochim Cosmochim Acta, 64: 51–60

    Google Scholar 

  • Fisher B, März C, Faust J, Moore O, Peacock C. 2020. What’s af (Fe) cting OC-Fe interactions? An experimental approach to understanding iron bound OC in sediments. EGU General Assembly Conference, 855

  • Friese A, Bauer K, Glombitza C, Ordonez L, Ariztegui D, Heuer V B, Vuillemin A, Henny C, Nomosatryo S, Simister R, Wagner D, Bijaksana S, Vogel H, Melles M, Russell J M, Crowe S A, Kallmeyer J. 2021. Organic matter mineralization in modern and ancient ferruginous sediments. Nat Commun, 12: 2216

    Google Scholar 

  • Gelting J, Breitbarth E, Stolpe B, Hassellöv M, Ingri J. 2010. Fractionation of iron species and iron isotopes in the Baltic Sea euphotic zone. Biogeosciences, 7: 2489–2508

    Google Scholar 

  • Ghaisas N A, Maiti K, Roy A. 2021. Iron-mediated organic matter preservation in the Mississippi River-influenced shelf sediments. J Geophys Res Biogeosci, 126: e2020JG006089

    Google Scholar 

  • Goñi M A, Yunker M B, Macdonald R W, Eglinton T I. 2005. The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean. Mar Chem, 93: 53–73

    Google Scholar 

  • Gu B, Schmitt J, Chen Z, Liang L, McCarthy J F. 1994. Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environ Sci Technol, 28: 38–46

    Google Scholar 

  • Gu B, Schmitt J, Chen Z, Liang L, McCarthy J F. 1995. Adsorption and desorption of different organic matter fractions on iron oxide. Geochim Cosmochim Acta, 59: 219–229

    Google Scholar 

  • Haese R R, Wallmann K, Dahmke A, Kretzmann U, Müller P J, Schulz H D. 1997. Iron species determination to investigate early diagenetic reactivity in marine sediments. Geochim Cosmochim Acta, 61: 63–72

    Google Scholar 

  • Hartnett H E, Keil R G, Hedges J I, Devol A H. 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature, 391: 572–575

    Google Scholar 

  • Hedges J I, Keil R G. 1995. Sedimentary organic matter preservation: An assessment and speculative synthesis. Mar Chem, 49: 81–115

    Google Scholar 

  • Hedges J I, Keil R G, Benner R. 1997. What happens to terrestrial organic matter in the ocean? Org Geochem, 27: 195–212

    Google Scholar 

  • Hemingway J D, Rothman D H, Grant K E, Rosengard S Z, Eglinton T I, Derry L A, Galy V V. 2019. Mineral protection regulates long-term global preservation of natural organic carbon. Nature, 570: 228–231

    Google Scholar 

  • Henneberry Y K, Kraus TEC, Nico P S, Horwath W R. 2012. Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Org Geochem, 48: 81–89

    Google Scholar 

  • Huang Y, Wang C. 2009. Progress of the study of reactive iron cycling in the paleo-ocean and its applications to the genesis of Cretaceous anoxicoxic sedimentary transition (in Chinese). Earth Sci Front, 16: 172–180

    Google Scholar 

  • Islam M A, Morton D W, Johnson B B, Angove M J. 2020. Adsorption of humic and fulvic acids onto a range of adsorbents in aqueous systems, and their effect on the adsorption of other species: A review. Separ Purific Tech, 247: 116949

    Google Scholar 

  • Jiao N, Li C, Wang X. 2016. Response and feedback of marine carbon sink to climate change (in Chinese). Advanc Earth Sci, 31: 668–681

    Google Scholar 

  • Jilbert T, Asmala E, Schröder C, Tiihonen R, Myllykangas J P, Virtasalo J J, Kotilainen A, Peltola P, Ekholm P, Hietanen S. 2018. Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments. Biogeosciences, 15: 1243–1271

    Google Scholar 

  • Jørgensen B B. 1982. Mineralization of organic matter in the sea bed—The role of sulphate reduction. Nature, 296: 643–645

    Google Scholar 

  • Kaiser K, Guggenberger G. 2000. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem, 31: 711–725

    Google Scholar 

  • Keil R G, Cowie G L. 1999. Organic matter preservation through the oxygen-deficient zone of the NE Arabian Sea as discerned by organic carbon: Mineral surface area ratios. Mar Geol, 161: 13–22

    Google Scholar 

  • Keil R G, Mayer L M. 2014. Mineral matrices and organic matter. In: Turekian K, Holland H, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier Science Ltd. 337–359

    Google Scholar 

  • Keil R G, Montluçon D B, Prahl F G, Hedges J I. 1994. Sorptive preservation of labile organic matter in marine sediments. Nature, 370: 549–552

    Google Scholar 

  • Keiluweit M, Kleber M. 2009. Molecular-level interactions in soils and sediments: The role of aromatic π-systems. Environ Sci Technol, 43: 3421–3429

    Google Scholar 

  • Kleber M, Bourg I C, Coward E K, Hansel C M, Myneni S C B, Nunan N. 2021. Dynamic interactions at the mineral-organic matter interface. Nat Rev Earth Environ, 2: 402–421

    Google Scholar 

  • Kleber M, Mikutta R, Torn M S, Jahn R. 2005. Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur J Soil Sci, 56: 717–725

    Google Scholar 

  • Lalonde K, Mucci A, Ouellet A, Gélinas Y. 2012. Preservation of organic matter in sediments promoted by iron. Nature, 483: 198–200

    Google Scholar 

  • Lenstra W K, Hermans M, Séguret M J M, Witbaard R, Behrends T, Dijkstra N, van Helmond N A G M, Kraal P, Laan P, Rijkenberg M J A, Severmann S, Teacǎ A, Slomp C P. 2019. The shelf-to-basin iron shuttle in the Black Sea revisited. Chem Geol, 511: 314–341

    Google Scholar 

  • Li L, Cabán-Acevedo M, Girard S N, Jin S. 2014. High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithiumion batteries. Nanoscale, 6: 2112–2118

    Google Scholar 

  • Linkhorst A, Dittmar T, Waska H. 2017. Molecular fractionation of dissolved organic matter in a shallow subterranean estuary: The role of the iron curtain. Environ Sci Technol, 51: 1312–1320

    Google Scholar 

  • Liu X, Zhang M, Li A, Fan D, Dong J, Jiao C, Chang X, Gu Y, Zhang K, Wang H. 2021. Depositional control on carbon and sulfur preservation onshore and offshore the Oujiang Estuary: Implications for the C/S ratio as a salinity indicator. Cont Shelf Res, 227: 104510

    Google Scholar 

  • Liu X, Yan J. 2011. Advances in the role ofiron in marine sediments during early diagenesis (in Chinese). Advanc Earth Sci, 26: 482–492

    Google Scholar 

  • Longman J, Faust J C, Bryce C, Homoky W B, März C. 2022. Organic carbon burial with reactive iron across global environments. Glob Biogeochem Cycle, 36: e2022GB007447

    Google Scholar 

  • Longman J, Gernon T M, Palmer M R, Manners H R. 2021. Tephra deposition and bonding with reactive oxides enhances burial of organic carbon in the Bering Sea. Glob Biogeochem Cycle, 35: e2021GB007140

    Google Scholar 

  • Lovley D R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev, 55: 259–287

    Google Scholar 

  • Lückge A, Boussafir M, Lallier-Vergès E, Littke R. 1996. Comparative study of organic matter preservation in immature sediments along the continental margins of Peru and Oman. Part I: Results of petrographical and bulk geochemical data. Org Geochem, 24: 437–451

    Google Scholar 

  • Lv J, Zhang S, Wang S, Luo L, Cao D, Christie P. 2016. Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides. Environ Sci Technol, 50: 2328–2336

    Google Scholar 

  • Lyons T W, Diamond C W, Planavsky N J, Reinhard C T, Li C. 2021. Oxygenation, life, and the planetary system during earth’s middle history: An overview. Astrobiology, 21: 906–923

    Google Scholar 

  • Lyons T W, Droser M L, Lau K V, Porter S M. 2018. Early Earth and the rise of complex life. Emerg Top Life Sci, 2: 121–124, doi: https://doi.org/10.1042/ETLS20180093

    Google Scholar 

  • Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506: 307–315

    Google Scholar 

  • Ma W W, Zhu M X, Yang G P, Li T. 2018. Iron geochemistry and organic carbon preservation by iron (oxyhydr)oxides in surface sediments of the East China Sea and the south Yellow Sea. J Mar Syst, 178: 62–74

    Google Scholar 

  • Ma W W, Zhu M X, Yang G P, Li T, Li Q Q, Liu S H, Li J L. 2022. Stability and molecular fractionation of ferrihydrite-bound organic carbon during iron reduction by dissolved sulfide. Chem Geol, 594: 120774

    Google Scholar 

  • Martin J H. 1990. Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography, 5: 1–13

    Google Scholar 

  • Mayer L M. 1994. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem Geol, 114: 347–363

    Google Scholar 

  • Melton E D, Swanner E D, Behrens S, Schmidt C, Kappler A. 2014. The interplay of microbially mediated and abiotic reactions in the biogeo-chemical Fe cycle. Nat Rev Microbiol, 12: 797–808

    Google Scholar 

  • Mikutta R, Lorenz D, Guggenberger G, Haumaier L, Freund A. 2014. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption. Geochim Cosmochim Acta, 144: 258–276

    Google Scholar 

  • Müller P J, Suess E. 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. Organic carbon preservation. Deep Sea Res Part A Oceanographic Res Papers, 26: 1347–1362

    Google Scholar 

  • Nabeh N, Brokaw C, Picard A. 2022. Quantification of organic carbon sequestered by biogenic iron sulfide minerals in long-term anoxic laboratory incubations. Front Microbiol, 13: 662219

    Google Scholar 

  • Nickel M, Vandieken V, Brüchert V, Jørgensen B B. 2008. Microbial Mn (IV) and Fe(III) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition. Deep Sea Res Part II-Top Stud Oceanogr, 55: 2390–2398

    Google Scholar 

  • O’Day P A, Rivera Jr. N, Root R, Carroll S A. 2004. X-ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments. Am Miner, 89: 572–585

    Google Scholar 

  • Parfitt R L, Fraser A R, Farmer V C. 1977. Adsorption on hydrous oxides. III. Fulvic and humic acid on goethite, gibbsite and imogolite. J Soil Sci, 28: 289–296

    Google Scholar 

  • Philippe A, Schaumann G E. 2014. Interactions ofdissolved organic matter with natural and engineered inorganic colloids: A review. Environ Sci Technol, 48:8946–8962

    Google Scholar 

  • Picard A, Gartman A, Cosmidis J, Obst M, Vidoudez C, Clarke D R, Girguis P R. 2019. Authigenic metastable iron sulfide minerals preserve microbial organic carbon in anoxic environments. Chem Geol, 530: 119343

    Google Scholar 

  • Raiswell R. 2006. Towards a global highly reactive iron cycle. J Geochem Explor, 88: 436–439

    Google Scholar 

  • Raiswell R, Canfield D E. 2012. The Iron Biogeochemical Cycle Past and Present. Mclean: GeoScience World, 1: 1–220

    Google Scholar 

  • Ransom B, Bennett R H, Baerwald R, Shea K. 1997. TEM study of in situ organic matter on continental margins: Occurrence and the “monolayer” hypothesis. Mar Geol, 138: 1–9

    Google Scholar 

  • Reiller P, Amekraz B, Moulin C. 2006. Adsorption on hydrous oxides. III. Fulvic and humic acid on goethite, gibbsite and imogolite. Environ Sci Technol, 40: 2235–2241

    Google Scholar 

  • Riedel T, Zak D, Biester H, Dittmar T. 2013. Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proc Natl Acad Sci USA, 110: 10101–10105

    Google Scholar 

  • Rothman D H, Hayes J M, Summons R E. 2003. Dynamics of the Neo-proterozoic carbon cycle. Proc Natl Acad Sci USA, 100: 8124–8129

    Google Scholar 

  • Roy M, McManus J, Goñi M A, Chase Z, Borgeld J C, Wheatcroft R A, Muratli J M, Megowan M R, Mix A. 2013. Reactive iron and manganese distributions in seabed sediments near small mountainous rivers off Oregon and California (USA). Cont Shelf Res, 54: 67–79

    Google Scholar 

  • Salvadó J A, Tesi T, Andersson A, Ingri J, Dudarev O V, Semiletov I P, Gustafsson Ö. 2015. Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf. Geophys Res Lett, 42: 8122–8130

    Google Scholar 

  • Schubert C J, Stein R. 1996. Deposition of organic carbon in Arctic Ocean sediments: Terrigenous supply vs marine productivity. Org Geochem, 24: 421–436

    Google Scholar 

  • Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu H Q, Fredrickson J K. 2016. Extracellular electron transfer mechanisms between micro-organisms and minerals. Nat Rev Microbiol, 14: 651–662

    Google Scholar 

  • Shields M R, Bianchi T S, Gélinas Y, Allison M A, Twilley R R. 2016. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophys Res Lett, 43: 1149–1157

    Google Scholar 

  • Sirois M, Couturier M, Barber A, Gélinas Y, Chaillou G. 2018. Interactions between iron and organic carbon in a sandy beach subterranean estuary. Mar Chem, 202: 86–96

    Google Scholar 

  • Song S, Santos I R, Yu H, Wang F, Burnett W C, Bianchi T S, Dong J, Lian E, Zhao B, Mayer L, Yao Q, Yu Z, Xu B. 2022. A global assessment of the mixed layer in coastal sediments and implications for carbon storage. Nat Commun, 13: 4903

    Google Scholar 

  • Sowers T D, Holden K L, Coward E K, Sparks D L. 2019. Dissolved organic matter sorption and molecular fractionation by naturally occurring bacteriogenic iron (oxyhydr)oxides. Environ Sci Technol, 53: 4295–4304

    Google Scholar 

  • Suess E. 1980. Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization. Nature, 288: 260–263

    Google Scholar 

  • Sun C H, Zhu M X, Ma W W, Sun Z L, Zhang X R, Ding K Y, Liu S H. 2020. Examining bulk and iron-associated organic carbon through depth in margin sea sediments (China) under contrasting depositional settings: Chemical and NEXAFS spectral characterization. J Mar Syst, 207: 103344

    Google Scholar 

  • Tagliabue A, Bowie A R, Boyd P W, Buck K N, Johnson K S, Saito M A. 2017. The integral role of iron in ocean biogeochemistry. Nature, 543: 51–59

    Google Scholar 

  • Tétrault A, Gélinas Y. 2022. Preferential sorption of polysaccharides on mackinawite: A chemometrics approach. Geochim Cosmochim Acta, 337: 61–72

    Google Scholar 

  • Tribovillard N, Bout-Roumazeilles V, Delattre M, Ventalon S, Bensadok A. 2022. Sedimentary pyrite as a trap oforganic matter: Preliminary results from large-framboid observation. Eur J Mineral, 34: 77–83

    Google Scholar 

  • van der Zee C, Roberts D R, Rancourt D G, Slomp C P. 2003. Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments. Geology, 31: 993–996

    Google Scholar 

  • Vosteen P, Spiegel T, Gledhill M, Frank M, Zabel M, Scholz F. 2022. The fate of sedimentary reactive iron at the land-ocean interface: A case study from the Amazon Shelf. Geochem Geophys Geosyst, 23: e2022GC010543

    Google Scholar 

  • Wagai R, Mayer L M. 2007. Sorptive stabilization oforganic matter in soils by hydrous iron oxides. Geochim Cosmochim Acta, 71: 25–35

    Google Scholar 

  • Wang Y, Zhang Z, Han L, Sun K, Jin J, Yang Y, Yang Y, Hao Z, Liu J, Xing B. 2019. Preferential molecular fractionation of dissolved organic matter by iron minerals with different oxidation states. Chem Geol, 520: 69–76

    Google Scholar 

  • Wang X C, Druffel E R M, Griffin S, Lee C, Kashgarian M. 1998. Radiocarbon studies of organic compound classes in plankton and sediment of the Northeastern Pacific Ocean. Geochim Cosmochim Acta, 62: 1365–1378

    Google Scholar 

  • Weber K A, Achenbach L A, Coates J D. 2006. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol, 4: 752–764

    Google Scholar 

  • Weisseborn P K, Warren L J, Dunn J G. 1995. Selective flocculation of ultrafine iron ore. 1. Mechanism of adsorption of starch onto hematite. Colloids Surfs A-Physicochem Eng Aspects, 99: 11–27

    Google Scholar 

  • Wijsman J W M, Herman P M J, Middelburg J J, Soetaert K. 2002. A model for early diagenetic processes in sediments of the continental shelf of the Black Sea. Estuar Coast Shelf Sci, 54: 403–421

    Google Scholar 

  • Xie S, Jiao N, Luo G, Li D, Wang P. 2022. Evolution of biotic carbon pumps in Earth history: Microbial roles as a carbon sink in oceans (in Chinese). Chin Sci Bull, 67: 1715–1726

    Google Scholar 

  • Xu B, Bianchi T S, Allison M A, Dimova N T, Wang H, Zhang L, Diao S, Jiang X, Zhen Y, Yao P, Chen H, Yao Q, Dong W, Sui J, Yu Z. 2015. Using multi-radiotracer techniques to better understand sedimentary dynamics of reworked muds in the Changjiang River estuary and inner shelf of East China Sea. Mar Geol, 370: 76–86

    Google Scholar 

  • Yang J, Wang J, Pan W, Regier T, Hu Y, Rumpel C, Bolan N, Sparks D. 2016. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L3, 2-edge XANES spectroscopy. Sci Rep, 6: 26127

    Google Scholar 

  • Yao P, Zhao B, Bianchi T S, Guo Z, Zhao M, Li D, Pan H, Wang J, Zhang T, Yu Z. 2014. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation. Cont ShelfRes, 91: 1–11

    Google Scholar 

  • Zabel M, Horst D S. 2000. Marine Geochemistry. 2nd ed. Berlin: Springer. 271–300

    Google Scholar 

  • Zhai X, Zhou Y. 2014. Modern Methods of Analyzing Structure of Materials. 2nd ed. Hefei: Press of University of Science and Technology of China. 2–55

    Google Scholar 

  • Zhang L, Chen M, Zheng Y, Wang J, Xiao X, Chen X, Hu C, Shen J, Liu J, Tang K, Xu D, Shi Q, Ning X, Thomas H, Qin W, Zhao M, Jiao N, Zhang Y. 2023. Microbially driven fate of terrigenous particulate organic matter in oceans. Limnol Oceanogr, 68:148–164

    Google Scholar 

  • Zhang S, Wang H, Wang X, Ye Y. 2022. Mesoproterozoic marine biological carbon pump: Source, degradation, and enrichment of organic matter (in Chinese). Chin Sci Bull, 67: 1624–1643

    Google Scholar 

  • Zhao B, Yao P, Bianchi T S, Shields M R, Cui X Q, Zhang X W, Huang X Y, Schröeder C, Zhao J, Yu Z G. 2018. The role of reactive iron in the preservation of terrestrial organic carbon in estuarine sediments. J Geophys Res-Biogeosci, 123: 3556–3569

    Google Scholar 

  • Zhao B, Yao P, Bianchi T S, Wang X, Shields M R, Schröder C, Yu Z. 2023. Preferential preservation ofpre-aged terrestrial organic carbon by reactive iron in estuarine particles and coastal sediments of a large river-dominated estuary. Geochim Cosmochim Acta, 345: 34–49

    Google Scholar 

  • Zhao B, Yao P, Yu Z. 2016. The effect of OC-iron oxide association on the preservation of sedimentary OC in marine environments (in Chinese). Adv Earth Sci, 31:1151–1158

    Google Scholar 

  • Zhao M, Mills B J W, Homoky W B, Peacock C L. 2023. Oxygenation of the Earth aided by mineral-organic carbon preservation. Nat Geosci, 16: 262–267

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 202241001), the Natural Nature Science Foundation of China (Grant Nos. 42076074, 42006041 & 42076034), and the Taishan Scholar Program (Grant No. TSQN20182117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Ji, Y., Zhao, B. et al. The effect of iron on the preservation of organic carbon in marine sediments and its implications for carbon sequestration. Sci. China Earth Sci. 66, 1946–1959 (2023). https://doi.org/10.1007/s11430-023-1139-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1139-9

Keywords

Navigation