Skip to main content
Log in

High-precision potassium isotope analysis using the Nu Sapphire collision cell (CC)-MC-ICP-MS

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

This study presents high-precision analyses of stable potassium (K) isotope ratio using the recently-developed, collision-cell multi-collector inductively coupled plasma mass spectrometry (CC-MC-ICP-MS, Nu Sapphire). The accuracy of our analyses is confirmed by measuring well-characterized geostandards (including rocks and seawater). Our results are consistent with literature values and a precision of 0.04‰ (2SD) has been achieved based on multiple measurements of BCR-2 geostandard over a six-month period. We also evaluate factors that may lead to artificial isotope fractionations, including the mismatches in K concentration and acid molarity between samples and bracketing standards, as well as potential matrices. As the K adsorption capacity of AGW50-X8 (200–400 mesh) is reduced with an increasing amount of matrix elements, less than 150 µg K was loaded during the column chemistry. To evaluate the potential use of K isotopes as an archive of paleo seawater composition, δ41K values of an international seawater standard (IAPSO), a Mn-nodule (NOD-P-1), and two iron formation standards (FeR-2 and FeR-4) are reported. The δ41K value of IAPSO is consistent with other seawater samples reported previously, further substantiating a homogeneous K isotopic distribution in modern global oceans. The K isotopes in Mn-nodule (NOD-P-1: −0.121±0.013‰) and iron formation samples (FeR-2: −0.538±0.009‰; FeR-4: −0.401±0.008‰) seem to be an effective tracer of their formation genesis and compositional changes of ancient seawater. Our results suggest that high-precision measurements of stable K isotopes can be routinely obtained and open up a large variety of geological applications, such as continental weathering, hydrothermal circulation and alteration of oceanic crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An S, Luo X, Li W. 2022. Precise measurement of 41K/39K ratios by high-resolution multicollector inductively coupled plasma mass spectrometry under a dry and hot plasma setting. Rapid Comm Mass Spectrometry, 36: e9289

    Article  Google Scholar 

  • Bekker A, Slack J F, Planavsky N, Krapez B, Hofmann A, Konhauser K O, Rouxel O J. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geol, 105: 467–508

    Article  Google Scholar 

  • Chen H, Liu X M, Wang K. 2020. Potassium isotope fractionation during chemical weathering of basalts. Earth Planet Sci Lett, 539: 116192

    Article  Google Scholar 

  • Chen H, Saunders N J, Jerram M, Halliday A N. 2021. High-precision potassium isotopic measurements by collision cell equipped MC-ICPMS. Chem Geol, 578: 120281

    Article  Google Scholar 

  • Chen H, Tian Z, Tuller-Ross B, Korotev R L, Wang K. 2019. High-precision potassium isotopic analysis by MC-ICP-MS: An inter-laboratory comparison and refined K atomic weight. J Anal At Spectrom, 34: 160–171

    Article  Google Scholar 

  • Christensen J N, Qin L, Brown S T, DePaolo D J. 2018. Potassium and calcium isotopic fractionation by plants (soybean [glycine max], rice [oryza sativa], and wheat [triticum aestivum]). ACS Earth Space Chem, 2: 745–752

    Article  Google Scholar 

  • Cronan D S. 2001. Manganese nodules. In: Steele J H, ed. Encyclopedia of Ocean Sciences, Second edition. Oxford: Academic Press. 488–495

    Chapter  Google Scholar 

  • Dymond J, Lyle M, Finney B, Piper D Z, Murphy K, Conard R, Pisias N. 1984. Ferromanganese nodules from MANOP Sites H, S, and R—Control of mineralogical and chemical composition by multiple accretionary processes. Geochim Cosmochim Acta, 48: 931–949

    Article  Google Scholar 

  • Flanagan F J, Gottfried D. 1980. USGS rock standards; III, Manganese-nodule reference samples USGS-Nod-A-1 and USGS-Nod-P-1. 1155

  • Glasby G. 2006. Manganese: Predominant role of nodules and crusts. In: Schulz H D, Zabel M, eds. Marine Geochemistry. Springer, Berlin, Heidelberg. 371–427

    Chapter  Google Scholar 

  • Gu H O, Sun H. 2021. High-precision analysis of potassium isotopes by MC-ICP-MS without collision cell using cool plasma technique in low-resolution mode. J Anal At Spectrom, 36: 2545–2552

    Article  Google Scholar 

  • Hille M, Hu Y, Huang T Y, Teng F Z. 2019. Homogeneous and heavy potassium isotopic composition of global oceans. Sci Bull, 64: 1740–1742

    Article  Google Scholar 

  • Hobin K, Costas Rodríguez M, Vanhaecke F. 2021. Robust potassium isotopic analysis of geological and biological samples via multicollector ICP-Mass spectrometry using the “extra-high resolution mode”. Anal Chem, 93: 8881–8888

    Article  Google Scholar 

  • Hu Y, Chen X Y, Xu Y K, Teng F Z. 2018. High-precision analysis of potassium isotopes by HR-MC-ICPMS. Chem Geol, 493: 100–108

    Article  Google Scholar 

  • Hu Y, Teng F Z, Plank T, Chauvel C. 2020. Potassium isotopic heterogeneity in subducting oceanic plates. Sci Adv, 6: eabb2472

    Article  Google Scholar 

  • Hu Y, Teng F Z, Chauvel C. 2021. Potassium isotopic evidence for sedimentary input to the mantle source of Lesser Antilles lavas. Geochim Cosmochim Acta, 295: 98–111

    Article  Google Scholar 

  • Hu Y, Teng F Z, Helz R T, Chauvel C. 2021b. Potassium isotope fractionation during magmatic differentiation and the composition of the mantle. J Geophys Res-Solid Earth, 126: e2020JB021543

    Google Scholar 

  • Huang T Y, Teng F Z, Rudnick R L, Chen X Y, Hu Y, Liu Y S, Wu F Y. 2020. Heterogeneous potassium isotopic composition of the upper continental crust. Geochim Cosmochim Acta, 278: 122–136

    Article  Google Scholar 

  • Humayun M, Clayton R N. 1995a. Potassium isotope cosmochemistry: Genetic implications of volatile element depletion. Geochim Cosmochim Acta, 59: 2131–2148

    Article  Google Scholar 

  • Humayun M, Clayton R N. 1995b. Precise determination of the isotopic composition of potassium: Application to terrestrial rocks and lunar soils. Geochim Cosmochim Acta, 59: 2115–2130

    Article  Google Scholar 

  • Ionov D A, Wang K. 2021. Potassium distribution and isotope composition in the lithospheric mantle in relation to global Earth’s reservoirs. Geochim Cosmochim Acta, 309: 151–170

    Article  Google Scholar 

  • Jiang Y, Koefoed P, Pravdivtseva O, Chen H, Li C H, Huang F, Qin L P, Liu J, Wang K. 2021. Early solar system aqueous activity: K isotope evidence from Allende. Meteorit Planet Sci, 56: 61–76

    Article  Google Scholar 

  • Koschinsky A, Heinrich L, Boehnke K, Cohrs J C, Markus T, Shani M, Singh P, Smith Stegen K, Werner W. 2018. Deep-sea mining: Interdisciplinary research on potential environmental, legal, economic, and societal implications. Integr Environ Assess Manag, 14: 672–691

    Article  Google Scholar 

  • Ku Y, Jacobsen S B. 2020. Potassium isotope anomalies in meteorites inherited from the protosolar molecular cloud. Sci Adv, 6: eabd0511

    Article  Google Scholar 

  • Li S, Li W, Beard B L, Raymo M E, Wang X, Chen Y, Chen J. 2019a. K isotopes as a tracer for continental weathering and geological K cycling. Proc Natl Acad Sci USA, 116: 8740–8745

    Article  Google Scholar 

  • Li W. 2017. Vital effects of K isotope fractionation in organisms: Observations and a hypothesis. Acta Geochim, 36: 374–378

    Article  Google Scholar 

  • Li W, Beard B L, Li S. 2016. Precise measurement of stable potassium isotope ratios using a single focusing collision cell multi-collector ICP-MS. J Anal At Spectrom, 31: 1023–1029

    Article  Google Scholar 

  • Li W, Li S, Beard B L. 2019b. Geological cycling of potassium and the K isotopic response: Insights from loess and shales. Acta Geochim, 38: 508–516

    Article  Google Scholar 

  • Li W, Liu X M, Hu Y, Teng F Z, Hu Y F, Chadwick O A. 2021a. Potassium isotopic fractionation in a humid and an arid soil-plant system in Hawai’i. Geoderma, 400: 115219

    Article  Google Scholar 

  • Li W, Liu X M, Hu Y, Teng F Z, Hu Y. 2021b. Potassium isotopic fractionation during clay adsorption. Geochim Cosmochim Acta, 304: 160–177

    Article  Google Scholar 

  • Li W, Liu X M, Wang K, Fodrie F J, Yoshimura T, Hu Y F. 2021c. Potassium phases and isotopic composition in modern marine biogenic carbonates. Geochim Cosmochim Acta, 304: 364–380

    Article  Google Scholar 

  • Li W, Liu X M, Wang K, Hu Y, Suzuki A, Yoshimura T. 2022a. Potassium incorporation and isotope fractionation in cultured scleractinian corals. Earth Planet Sci Lett, 581: 117393

    Article  Google Scholar 

  • Li X, Han G, Liu M, Liu J, Zhang Q, Qu R. 2022b. Potassium and its isotope behaviour during chemical weathering in a tropical catchment affected by evaporite dissolution. Geochim Cosmochim Acta, 316: 105–121

    Article  Google Scholar 

  • Li X, Han G, Zhang Q, Miao Z. 2020. An optimal separation method for high-precision K isotope analysis by using MC-ICP-MS with a dummy bucket. J Anal At Spectrom, 35: 1330–1339

    Article  Google Scholar 

  • Liu H, Wang K, Sun W D, Xiao Y, Xue Y Y, Tuller-Ross B. 2020. Extremely light K in subducted low-T altered oceanic crust: Implications for K recycling in subduction zone. Geochim Cosmochim Acta, 277: 206–223

    Article  Google Scholar 

  • Liu H Y, Xue Y Y, Wang K., Sun W D, Wang K. 2021. Contributions of slab-derived fluids to ultrapotassic rocks indicated by K isotopes. Lithos, 396–397: 106202

    Article  Google Scholar 

  • Morgan L E, Santiago Ramos D P, Davidheiser-Kroll B, Faithfull J, Lloyd N S, Ellam R M, Higgins J A. 2018. High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability of δ41K. At Spectrom, 33: 175–186

    Article  Google Scholar 

  • Moynier F, Hu Y, Dai W, Kubik E, Mahan B, Moureau J. 2021a. Potassium isotopic composition of seven widey available biological standards using collision cell (CC)-MC-ICP-MS. J Anal At Spectrom, 36: 2444–2448

    Article  Google Scholar 

  • Moynier F, Hu Y, Wang K, Zhao Y, Gérard Y, Deng Z, Moureau J, Li W, Simon J I, Teng F Z. 2021b. Potassium isotopic composition of various samples using a dual-path collision cell-capable multiple-collector inductively coupled plasma mass spectrometer, Nu instruments Sapphire. Chem Geol, 571: 120144

    Article  Google Scholar 

  • Nie N X, Chen X Y, Hopp T, Hu J Y, Zhang Z J, Teng F Z, Shahar A, Dauphas N. 2021. Imprint of chondrule formation on the K and Rb isotopic compositions of carbonaceous meteorites. Sci Adv, 7: eabl3929

    Article  Google Scholar 

  • Parendo C A, Jacobsen S B, Wang K. 2017. K isotopes as a tracer of seafloor hydrothermal alteration. Proc Natl Acad Sci USA, 114: 1827–1831

    Article  Google Scholar 

  • Parendo C A, Jacobsen S B, Kimura J I, Taylor R N. 2022. Across-arc variations in K-isotope ratios in lavas of the Izu arc: Evidence for progressive depletion of the slab in K and similarly mobile elements. Earth Planet Sci Lett, 578: 117291

    Article  Google Scholar 

  • Santiago Ramos D P, Coogan L A, Murphy J G, Higgins J A. 2020. Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater. Earth Planet Sci Lett, 541: 116290

    Article  Google Scholar 

  • Santiago Ramos D P, Morgan L E, Lloyd N S, Higgins J A. 2018. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: Insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids. Geochim Cosmochim Acta, 236: 99–120

    Article  Google Scholar 

  • Sun Y, Teng F Z, Hu Y, Chen X Y, Pang K N. 2020. Tracing subducted oceanic slabs in the mantle by using potassium isotopes. Geochim Cosmochim Acta, 278: 353–360

    Article  Google Scholar 

  • Teng F Z, Hu Y, Ma J L, Wei G J, Rudnick R L. 2020. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance. Geochim Cosmochim Acta, 278: 261–271

    Article  Google Scholar 

  • Tian Z, Magna T, Day J M D, Mezger K, Scherer E E, Lodders K, Hin R C, Koefoed P, Bloom H, Wang K. 2021. Potassium isotope composition of Mars reveals a mechanism of planetary volatile retention. Proc Natl Acad Sci USA, 118: e2101155118

    Article  Google Scholar 

  • Tuller-Ross B, Savage P S, Chen H, Wang K. 2019. Potassium isotope fractionation during magmatic differentiation of basalt to rhyolite. Chem Geol, 525: 37–45

    Article  Google Scholar 

  • Verbeek A A, Schreiner G D L. 1967. Variations in 39K:41K ratio and movement of potassium in a granite-amphibolite contact region. Geochim Cosmochim Acta, 31: 2125–2133

    Article  Google Scholar 

  • Wang K, Jacobsen S B. 2016a. An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts. Geochim Cosmochim Acta, 178: 223–232

    Article  Google Scholar 

  • Wang K, Jacobsen S B. 2016b. Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature, 538: 487–490

    Article  Google Scholar 

  • Wang K, Close H G, Tuller-Ross B, Chen H. 2020. Global average potassium isotope composition of modern seawater. ACS Earth Space Chem, 4: 1010–1017

    Article  Google Scholar 

  • Wang K, Li W, Li S, Tian Z, Koefoed P, Zheng X Y. 2021a. Geochemistry and cosmochemistry of potassium stable isotopes. Geochemistry, 81: 125786

    Article  Google Scholar 

  • Wang K, Peucker-Ehrenbrink B, Chen H, Lee H, Hasenmueller E A. 2021b. Dissolved potassium isotopic composition of major world rivers. Geochim Cosmochim Acta, 294: 145–159

    Article  Google Scholar 

  • Wang Y, Wu W H. 2017. Regulation of potassium transport and signaling in plants. Curr Opin Plant Biol, 39: 123–128

    Article  Google Scholar 

  • Wang Z Z, Teng F Z., Prelević D, Liu S A, Zhao Z. 2021c. Potassium isotope evidence for sediment recycling into the orogenic lithospheric mantle. Geochem Persp Let, 18: 43–47

    Article  Google Scholar 

  • Wang Z Z, Teng F Z, Busigny V, Liu S A. 2022. Evidence from HP/UHP metasediments for recycling of isotopically heterogeneous potassium into the mantle. Am Miner, 107: 350–356

    Article  Google Scholar 

  • Xu Y K, Hu Y, Chen X Y, Huang T Y, Sletten R S, Zhu D, Teng F Z. 2019. Potassium isotopic compositions of international geological reference materials. Chem Geol, 513: 101–107

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Qinghan YUAN, Xuyang ZHENG, and Xiaoqiang LI for the development of K isotope analysis and Yanhong LIU for assistance in ICP-OES analysis. We also thank Yan HU, Zidong PENG, the anonymous reviewers and the editor-in-Chief Yongfei ZHENG for insightful comments and helpful discussions. This study was financially supported by the Experimental Technology Innovation Fund of the Institute of Geology and Geophysics, Chinese Academy of Sciences (Grant No. TEC 202103) and the Youth Innovation Promotion Association, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjun Li or Benxun Su.

Additional information

This work was supported by the Experimental Technology Innovation

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Cui, M., Pan, Q. et al. High-precision potassium isotope analysis using the Nu Sapphire collision cell (CC)-MC-ICP-MS. Sci. China Earth Sci. 65, 1510–1521 (2022). https://doi.org/10.1007/s11430-022-9948-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-9948-6

Keywords

Navigation