Skip to main content
Log in

New dating indicates intermittent human occupation of the Nwya Devu Paleolithic site on the high-altitude central Tibetan Plateau during the past 45,000 years

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The timing and mechanisms of the human occupation of the demanding high-altitude Tibetan Plateau environment are of great interest. Here, we report on our reinvestigations and dating of the Nwya Devu site, located nearly 4600 meters above sea level on the central Tibetan Plateau. A new microblade techno-complex was identified on a lower lake shore at this site, distinct from the previously reported blade tool assemblage. These two lithic assemblages were dated to 45.6±2.6 and 10.3±0.5 ka using optically stimulated luminescence and accelerator mass spectrometry 14C methods. They represent, respectively, the earliest known Paleolithic and microlithic sites on the interior Tibetan Plateau, indicating multiple occupation episodes of hunter-gatherers during the past 45 ka. Our studies reveal that relatively stable depositional conditions and a paleoenvironment characterized by a comparatively warm climate facilitated these multiple occupations at Nwya Devu. The contemporaneous occurrence of the Upper Paleolithic blade technology on the Tibetan Plateau and most of Eurasia between 50 and 40 ka indicates rapid, large-scale dispersals of humans that profoundly affected human demography on a large scale. Combining new archaeological evidence and previously reported genetic data, we conclude that the Tibetan Plateau provided a relatively stable habitat for Upper Paleolithic hunter-gatherers, which may have contributed to the complex and multiple-origin gene pool of present-day Tibetans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken M J. 1985. Thermoluminescence Dating. London: Academic Press

    Google Scholar 

  • An Z, Colman S M, Zhou W, Li X, Brown E T, Jull A J T, Cai Y, Huang Y, Lu X, Chang H, Song Y, Sun Y, Xu H, Liu W, Jin Z, Liu X, Cheng P, Liu Y, Ai L, Li X, Liu X, Yan L, Shi Z, Wang X, Wu F, Qiang X, Dong J, Lu F, Xu X. 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci Rep, 2: 619

    PubMed  PubMed Central  Google Scholar 

  • Anoikin A A, Pavlenok G D, Kharevich V M, Taimagambetov Z K, Shalagina A V, Gladyshev S A, Ulyanov V A, Duvanbekov R S, Shunkov M V. 2020. Ushbulak—A new stratified upper paleolithic site in Northeastern Kazakhstan. Arheol Ètnogr Antropol Evrazii, 47: 16–29

    Google Scholar 

  • Bae C J, Douka K, Petraglia M D. 2017. On the origin of modern humans: Asian perspectives. Science, 358: eaai9067

    PubMed  Google Scholar 

  • Beall C M, Cavalleri G L, Deng L, Elston R C, Gao Y, Knight J, Li C, Li J C, Liang Y, McCormack M, Montgomery H E, Pan H, Robbins P A, Shianna K V, Tam S C, Tsering N, Veeramah K R, Wang W, Wangdui P, Weale M E, Xu Y, Xu Z, Yang L, Zaman M J, Zeng C, Zhang L, Zhang X, Zhaxi P, Zheng Y T. 2010. Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci USA, 107: 11459–11464

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Beall C M. 2014. Adaptation to high altitude: Phenotypes and genotypes. Annu Rev Anthropol, 43: 251–272

    Google Scholar 

  • Bergström A, Stringer C, Hajdinjak M, Scerri E M L, Skoglund P. 2021. Origins of modern human ancestry. Nature, 590: 229–237

    ADS  PubMed  Google Scholar 

  • Bigham AW. 2016. Genetics of human origin and evolution: High-altitude adaptations. Curr Opin Genet Dev, 41: 8–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Better-Jensen L, Andersen C E, Duller GAT, Murray A S. 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiat Meas, 37: 535–541

    Google Scholar 

  • Brantingham P J, Gao X. 2006. Peopling of the northern Tibetan Plateau. World Archaeol, 38: 387–414

    Google Scholar 

  • Bronk Ramsey C. 2008. Deposition models for chronological records. Quat Sci Rev, 27: 42–60

    ADS  Google Scholar 

  • Bronk Ramsey C. 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon, 51: 1023–1045

    Google Scholar 

  • Bronk Ramsey C. 2017. Methods for summarizing radiocarbon datasets. Radiocarbon, 59: 1809–1833

    Google Scholar 

  • Buylaert J P, Jain M, Murray A S, Thomsen K J, Thiel C, Sohbati R. 2012. A robust feldspar luminescence dating method for Middle and Lat Pleistocene sediments. Boreas, 41: 435–451

    Google Scholar 

  • Chen F H, Dong G H, Zhang D J, Liu X Y, Jia X, An C B, Ma M M, Xie Y W, Barton L, Ren X Y, Zhao Z J, Wu X H, Jones M K. 2015. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science, 347: 248–250

    ADS  CAS  PubMed  Google Scholar 

  • Chen F, Welker F, Shen C C, Bailey S E, Bergmann I, Davis S, Xia H, Wang H, Fischer R, Freidline S E, Yu T L, Skinner M M, Stelzer S, Dong G, Fu Q, Dong G, Wang J, Zhang D, Hublin J J. 2019. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569: 409–412

    ADS  CAS  PubMed  Google Scholar 

  • Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X, Li X, Kong X, Wang Y, Ning Y, Zhang H. 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534: 640–646

    ADS  CAS  PubMed  Google Scholar 

  • Choin J, Mendoza-Revilla J, Arauna L R, Cuadros-Espinoza S, Cassar O, Larena M, Ko A M S, Harmant C, Laurent R, Verdu P, Laval G, Boland A, Olaso R, Deleuze J F, Valentin F, Ko Y C, Jakobsson M, Gessain A, Excoffier L, Stoneking M, Patin E, Quintana-Murci L. 2021. Genomic insights into population history and biological adaptation in Oceania. Nature, 592: 583–589

    ADS  CAS  PubMed  Google Scholar 

  • Cunningham A C, Wallinga J. 2010. Selection of integration time intervals for quartz OSL decay curves. Quat Geochronol, 5: 657–666

    Google Scholar 

  • Dortch J M, Owen L A, Caffee M W. 2013. Timing and climatic drivers for glaciation across semi-arid western Himalayan-Tibetan orogen. Quat Sci Rev, 78: 188–208

    ADS  Google Scholar 

  • Duller G A T. 2008. Single-grain optical dating of Quaternary sediments: Why aliquot size matters in luminescence dating. Boreas, 37: 589–612

    Google Scholar 

  • Duller G A T. 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat Meas, 37: 161–165

    CAS  Google Scholar 

  • Durcan J A, King G E, Duller G A T. 2015. DRAC: Dose rate and age calculator for trapped charge dating. Quat Geochronol, 28: 54–61

    Google Scholar 

  • Fan Q S, Lai Z P, Long H, Sun Y J, Liu X J. 2010. OSL chronology for lacustrine sediments recording high stands of Gahai Lake in Qaidam Basin, northeastern Qinghai-Tibetan Plateau. Quat Geochronol, 5: 223–227

    Google Scholar 

  • Fewlass H, Talamo S, Wacker L, Kromer B, Tuna T, Fagault Y, Bard E, McPherron S P, Aldeias V, Maria R, Martisius N L, Paskulin L, Rezek Z, Sinet-Mathiot V, Sirakova S, Smith G M, Spasov R, Welker F, Sirakov N, Tsanova T, Hublin J J. 2020. A 14C chronology for the transition at Bacho Kiro Cave, Bulgaria. Nat Ecol Evol, 4: 794–801

    PubMed  Google Scholar 

  • Fu Q, Li H, Moorjani P, Jay F, Slepchenko S M, Bondarev A A, Johnson P L F, Aximu-Petri A, Prüfer K, de Filippo C, Meyer M, Zwyns N, Salazar-García D C, Kuzmin Y V, Keates S G, Kosintsev P A, Razhev D I, Richards M P, Peristov N V, Lachmann M, Douka K, Higham T F G, Slatkin M, Hublin J J, Reich D, Kelso J, Viola T B, Pääbo S. 2014. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature, 514: 445–449

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Goebel T, Derevianko A P, Petrin V T. 1993. Dating the middle-to-upper-paleolithic transition at Kara-Bom. Curr Anthropol, 34: 452–458

    Google Scholar 

  • Guérin G, Mercier N, Adamiec G. 2011. Dose-Rate Conversion Factors: Update. Ancient TL, 29: 5–8

    Google Scholar 

  • Han J E, Cai M T, Shao Z G, Liu F, Zhang Q Q, Zhang S Q, Yu J, Li X L, Zhang Z G, Zhu D G. 2021. Vegetation and climate change since the late glacial period on the southern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 572: 110403

    Google Scholar 

  • He G, Wang M, Zou X, Chen P, Wang Z, Liu Y, Yao H, Wei L H, Tang R, Wang C C, Yeh H Y. 2021. Peopling history of the Tibetan Plateau and multiple waves of admixture of Tibetans inferred from both ancient and modern genome-wide data. Front Genet, 12: 725243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou J Z, D’Andrea W J, Liu Z H. 2012. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quat Sci Rev, 48: 67–79

    ADS  Google Scholar 

  • Hou Y D, Long H, Shen J, Gao L. 2021. Holocene lake-level fluctuations of Selin Co on the central Tibetan plateau: Regulated by monsoonal precipitation or meltwater? Quat Sci Rev, 261: 106919

    Google Scholar 

  • Hu H, Petousi N, Glusman G, Yu Y, Bohlender R, Tashi T, Downie J M, Roach J C, Cole A M, Lorenzo F R. 2017. Evolutionary history of Tibetans inferred from whole-genome sequencing. Plos Genet, 13: e1006675

    PubMed  PubMed Central  Google Scholar 

  • Huang L, Chen Y W, Wu Y, Zeng T, Wei G J. 2022. Lake level changes of Nam Co since 25 ka as revealed by OSL dating of paleo-shorelines. Quat Geochronol, 70: 101274

    Google Scholar 

  • Hublin J J, Sirakov N, Aldeias V, Bailey S, Bard E, Delvigne V, Endarova E, Fagault Y, Fewlass H, Hajdinjak M, Kromer B, Krumov I, Marreiros J, Martisius N L, Paskulin L, Sinet-Mathiot V, Meyer M, Pääbo S, Popov V, Rezek Z, Sirakova S, Skinner M M, Smith G M, Spasov R, Talamo S, Tuna T, Wacker L, Welker F, Wilcke A, Zahariev N, McPherron S P, Tsanova T. 2020. Initial Upper Palaeolithic homo sapiens from Bacho Kiro Cave, Bulgaria. Nature, 581: 299–302

    ADS  CAS  PubMed  Google Scholar 

  • Hudson A M, Quade J, Huth T E, Lei G L, Cheng H, Edwards L R, Olsen J W, Zhang H C. 2015. Lake level reconstruction for 12.8–2.3 ka of the Ngangla Ring Tso closed-basin lake system, Southwest Tibetan Plateau. Quat Res, 83: 66–79

    CAS  Google Scholar 

  • Huerta-Sánchez E, Casey F P. 2015. Archaic inheritance: Supporting high-altitude life in Tibet. J Appl Physiol, 119: 1129–1134

    PubMed  Google Scholar 

  • Huerta-Sánchez E, Jin X, Asan X, Bianba Z, Peter B M, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, Ni P, Wang B, Ou X, Huasang X, Luosang J, Cuo Z X P, Li K, Gao G, Yin Y, Wang W, Zhang X, Xu X, Yang H, Li Y, Wang J, Wang J, Nielsen R. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512: 194–197

    ADS  PubMed  PubMed Central  Google Scholar 

  • Jacobs Z, Li B, Shunkov M V, Kozlikin M B, Bolikhovskaya N S, Agadjanian A K, Uliyanov V A, Vasiliev S K, O’Gorman K, Derevianko A P, Roberts R G. 2019. Timing of archaic hominin occupation of Denisova Cave in southern Siberia. Nature, 565: 594–599

    ADS  CAS  PubMed  Google Scholar 

  • Jain M, Murray A S, Better-Jensen L. 2003. Characterisation of blue-light stimulated luminescence components in different quartz samples: Implications for dose measurement. Radiat Meas, 37: 441–449

    CAS  Google Scholar 

  • Jeong C, Ozga AT, Witonsky D B, Malmström H, Edlund H, Hofman C A, Hagan R W, Jakobsson M, Lewis C M, Aldenderfer M S, Di Rienzo A, Warinner C. 2016. Long-term genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc. Proc Natl Acad Sci USA, 113: 7485–7490

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kageyama M, Harrison S P, Kapsch M L, Lofverstrom M, Lora J M, Mikolajewicz U, Sherriff-Tadano S, Vadsaria T, Abe-Ouchi A, Bouttes N, Chandan D, Gregoire L J, Ivanovic R F, Izumi K, LeGrande A N, Lhardy F, Lohmann G, Morozova P A, Ohgaito R, Paul A, Peltier W R, Poulsen C J, Quiquet A, Roche D M, Shi X, Tierney J E, Valdes P J, Volodin E, Zhu J. 2021. The PMIP4 Last Glacial Maximum experiments: Preliminary results and comparison with the PMIP3 simulations. Clim Past, 17: 1065–1089

    Google Scholar 

  • Kuhn S L, Zwyns N. 2014. Rethinking the initial Upper Paleolithic. Quat Int, 347: 29–38

    Google Scholar 

  • Lai Z P, Mischke S, Madsen D. 2014. Paleoenvironmental implications of new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau. J Paleolimnol, 51: 197–210

    Google Scholar 

  • Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M. 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc Natl Acad Sci USA, 111: 15296–15303

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Kuhn S L, Olsen J W, Chen F Y, Gao X. 2014. Disparate stone age technological evolution in North China. J Anthropol Res, 70: 35–67

    Google Scholar 

  • Li Y C, Tian J Y, Liu F W, Yang B Y, Gu K S Y, Rahman Z U, Yang L Q, Chen F H, Dong G H, Kong Q P. 2019. Neolithic millet farmers contributed to the permanent settlement of the Tibetan Plateau by adopting barley agriculture. Natl Sci Rev, 6: 1005–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: 2004PA001071

    Google Scholar 

  • Liu C C, Witonsky D, Gosling A, Lee J H, Ringbauer H, Hagan R, Patel N, Stahl R, Novembre J, Aldenderfer M, Warinner C, Di Rienzo A, Jeong C. 2022. Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors. Nat Commun, 13: 1203

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X J, Cong L, Li X Z, Madsen D, Wang Y X, Liu Y G, Peng J. 2020. Climate conditions on the Tibetan Plateau during the last glacial maximum and implications for the survival of paleolithic foragers. Front Earth Sci, 8: 606051

    Google Scholar 

  • Liu X J, Lai Z P, Madsen D B, Li G Q, Yu L P, Huang C, Chen F H. 2018. Late Quaternary Highstands of Qinghai Lake, Qinghai-Tibetan Plateau (in Chinese). Quat Sci, 38: 1166–1178

    CAS  Google Scholar 

  • Lou H, Lu Y, Lu D, Fu R, Wang X, Feng Q, Wu S, Yang Y, Li S, Kang L, Guan Y, Hoh B P, Chung Y J, Jin L, Su B, Xu S. 2015. A 3.4-kb copy-number deletion near EPAS1 is significantly enriched in high-altitude Tibetans but absent from the denisovan sequence. Am J Hum Genet, 97: 54–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu D, Lou H, Yuan K, Wang X, Wang Y, Zhang C, Lu Y, Yang X, Deng L, Zhou Y, Feng Q, Hu Y, Ding Q, Yang Y, Li S, Jin L, Guan Y, Su B, Kang L, Xu S. 2016. Ancestral origins and genetic history of Tibetan highlanders. Am J Hum Genet, 99: 580–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo L, Lai Z P, Zheng W H, Xu Y T, Yu L P, Huang C, Tu H. 2021. OSL chronology of the siling Co paleolithic site in Central Tibetan Plateau. Front Earth Sci, 9: 699693

    Google Scholar 

  • Madsen D B, Lai Z P, Sun Y J, Rhode D, Liu X J, Jeffrey Brantingham P. 2014. Late Quaternary Qaidam lake histories and implications for an MIS 3 “Greatest Lakes” period in northwest China. J Paleolimnol, 51: 161–177

    Google Scholar 

  • Madsen D B, Perreault C, Rhode D, Sun Y, Yi M, Brunson K, Brantingham P J. 2017. Early foraging settlement of the Tibetan Plateau highlands. Archaeol Res Asia, 11: 15–26

    Google Scholar 

  • Meng K, Shi X H, Wang E, Liu F. 2012. High-altitude salt lake elevation changes and glacial ablation in Central Tibet, 2000–2010. Chin Sci Bull, 57: 525–534

    Google Scholar 

  • Meyer M C, Aldenderfer M S, Wang Z, Hoffmann D L, Dahl J A, Degering D, Haas W R, Schlütz F. 2017. Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science, 355: 64–67

    ADS  CAS  PubMed  Google Scholar 

  • Moore L G, Charles S M, Julian C G. 2011. Humans at high altitude: Hypoxia and fetal growth. Respiratory Physiol Neurobiol, 178: 181–190

    Google Scholar 

  • Murray A S, Wintle A G. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat Meas, 32: 57–73

    CAS  Google Scholar 

  • Murray A S, Wintle A G. 2003. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiat Meas, 37: 377–381

    CAS  Google Scholar 

  • NGICPM. 2004. High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature, 431: 147–151

    Google Scholar 

  • Olley J M, Pietsch T, Roberts R G. 2004. Optical dating of Holocene sediments from a variety of geomorphic settings using single grains of quartz. Geomorphology, 60: 337–358

    ADS  Google Scholar 

  • Osman M B, Tierney J E, Zhu J, Tardif R, Hakim G J, King J, Poulsen C J. 2021. Globally resolved surface temperatures since the Last Glacial Maximum. Nature, 599: 239–244

    ADS  CAS  PubMed  Google Scholar 

  • Peng F, Lin S C, Patania I, Levchenko V, Guo J L, Wang H M, Gao X. 2020. A chronological model for the late paleolithic at Shuidonggou Locality 2, North China. PloS One, 15: e0232682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petraglia M D, Haslam M, Fuller D Q, Boivin N, Clarkson C. 2010. Out of Africa: New hypotheses and evidence for the dispersal of Homo sapiens along the Indian Ocean rim. Ann Hum Biol, 37: 288–311

    PubMed  Google Scholar 

  • Pitulko V V, Tikhonov A N, Pavlova E Y, Nikolskiy P A, Kuper K E, Polozov R N. 2016. Early human presence in the Arctic: Evidence from 45,000-year-old mammoth remains. Science, 351: 260–263

    ADS  CAS  PubMed  Google Scholar 

  • Prescott J R, Hutton J T. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiat Meas, 23: 497–500

    CAS  Google Scholar 

  • Qi X, Cui C, Peng Y, Zhang X, Yang Z, Zhong H, Zhang H, Xiang K, Cao X, Wang Y, Ouzhuluobu Y, Basang Y, Ciwangsangbu Y, Bianba Y, Gonggalanzi Y, Wu T, Chen H, Shi H, Su B. 2013. Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the Tibetan Plateau. Mol Biol Evol, 30: 1761–1778

    CAS  PubMed  Google Scholar 

  • Qin F, Zhao Y, Cao X Y. 2022. Biome reconstruction on the Tibetan Plateau since the Last Glacial Maximum using a machine learning method. Sci China Earth Sci, 65: 518–535

    ADS  Google Scholar 

  • Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E. 2015. Evidence for archaic adaptive introgression in humans. Nat Rev Genet, 16: 359–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reich D, Green R E, Kircher M, Krause J, Patterson N, Durand E Y, Viola B, Briggs A W, Stenzel U, Johnson P L F, Maricic T, Good J M, Marques-Bonet T, Alkan C, Fu Q, Mallick S, Li H, Meyer M, Eichler E E, Stoneking M, Richards M, Talamo S, Shunkov M V, Derevianko A P, Hublin J J, Kelso J, Slatkin M, Pääbo S. 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468: 1053–1060

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimer P J, Austin W E N, Bard E, Bayliss A, Blackwell P G, Bronk Ramsey C, Butzin M, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Hajdas I, Heaton T J, Hogg A G, Hughen K A, Kromer B, Manning S W, Muscheler R, Palmer J G, Pearson C, van der Plicht J, Reimer R W, Richards D A, Scott E M, Southon J R, Turney C S M, Wacker L, Adolphi F, Büntgen U, Capano M, Fahrni S M, Fogtmann-Schulz A, Friedrich R, Köhler P, Kudsk S, Miyake F, Olsen J, Reinig F, Sakamoto M, Sookdeo A, Talamo S. 2020. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon, 62: 725–757

    CAS  Google Scholar 

  • Rhode D, Haizhou M, Madsen D B, Brantingham P J, Forman S L, Olsen J W. 2010. Paleoenvironmental and archaeological investigations at Qinghai Lake, western China: Geomorphic and chronometric evidence of lake level history. Quat Int, 218: 29–44

    Google Scholar 

  • Roberts H M. 2006. Optical dating of coarse-silt sized quartz from loess: Evaluation of equivalent dose determinations and SAR procedural checks. Radiat Meas, 41: 923–929

    CAS  Google Scholar 

  • Rodnight H. 2008. How Many Equivalent Dose Values Are Needed to Obtain a Reproducible Distribution. Ancient TL, 26: 3–9

    Google Scholar 

  • Rybin E P, Paine C H, Khatsenovich A M, Tsedendorj B, Talamo S, Marchenko D V, Rendu W, Klementiev A M, Odsuren D, Gillam J C, Gunchinsuren B, Zwyns N. 2020. A new Upper Paleolithic occupation at the site of Tolbor-21 (Mongolia): Site formation, human behavior and implications for the regional sequence. Quat Int, 559: 133–149

    Google Scholar 

  • Shi X H, Furlong K P, Kirby E, Meng K, Marrero S, Gosse J, Wang E C, Phillips F. 2017. Evaluating the size and extent of paleolakes in central Tibet during the late Pleistocene. Geophys Res Lett, 44: 5476–5485

    ADS  Google Scholar 

  • Shi X H, Kirby E, Furlong K P, Meng K, Robinson R, Wang E. 2015. Crustal strength in central Tibet determined from Holocene shoreline deflection around Siling Co. Earth Planet Sci Lett, 423: 145–154

    ADS  CAS  Google Scholar 

  • Simonson T S. 2015. Altitude adaptation: A glimpse through various lenses. High Altitude Med Biol, 16: 125–137

    ADS  CAS  Google Scholar 

  • Smith B W, Rhodes E J. 1994. Charge movements in quartz and their relevance to optical dating. Radiat Meas, 23: 329–333

    CAS  Google Scholar 

  • Svoboda J, Škrdla P. 1995. The bohunician technology. In: Dibble H L, Bar-Yosef O, eds. The Definition and Interpretation of Levallois Technology. Madison: Prehistory Press. 429–438

    Google Scholar 

  • Thompson L G, Yao T D, Davis M E, Henderson K A, Mosley-Thompson E, Lin P N, Beer J, Synal H A, Cole-Dai J, Bolzan J F. 1997. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 276: 1821–1825

    CAS  Google Scholar 

  • Tostevin G B. 2003. A Quest for antecedents: A comparison of the terminal middle palaeolithic and Early Upper Palaeolithic of the Levant. In: Goring-Morris A N, Belfer-Cohen A, eds. More Than Meets the Eye: Studies on Upper Palaeolithic Diversity in the near East. Oxford: Oxbow Books. 54–67

    Google Scholar 

  • Wintle A G, Murray A S. 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat Meas, 41: 369–391

    CAS  Google Scholar 

  • Wu Z H, Tao Z X, Wu Z H, Zhou C J, Yan F H, Mai X S, Zhu D G. 2004. Palaeovegetation, palaeoclimate and lake-level chang since 120 ka Bp in Nam Co, Central Xizang. Acta Geol Sin, 78: 242–252

    Google Scholar 

  • Yan D D, Wünnemann B. 2014. Late Quaternary water depth changes in Hala Lake, northeastern Tibetan Plateau, derived from ostracod assemblages and sediment properties in multiple sediment records. Quat Sci Rev, 95: 95–114

    ADS  Google Scholar 

  • Yan Q, Owen L A, Zhang Z S, Jiang N X, Zhang R. 2020. Deciphering the evolution and forcing mechanisms of glaciation over the Himalayan-Tibetan orogen during the past 20,000 years. Earth Planet Sci Lett, 541: 116295

    CAS  Google Scholar 

  • Yan Q, Owen L A, Zhang Z S, Wang H J, Wei T, Jiang N X, Zhang R. 2021. Divergent evolution of glaciation across high-mountain asia during the last four glacial-interglacial cycles. Geophys Res Lett, 48: e2021GL092411

    ADS  Google Scholar 

  • Yi S W, Buylaert J P, Murray A S, Lu H Y, Thiel C, Zeng L. 2016. A detailed post- IR IRSL dating study of the Niuyangzigou loess site in northeastern China. Boreas, 45: 644–657

    Google Scholar 

  • Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo Z X P, Pool J E, Xu X, Jiang H, Vinckenbosch N, Korneliussen T S, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Asan Q, Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, Zhou G, Tang M, Qin J, Wang T, Feng S, Li G, Huasang G, Luosang J, Wang W, Chen F, Wang Y, Zheng X, Li Z, Bianba Z, Yang G, Wang X, Tang S, Gao G, Chen Y, Luo Z, Gusang L, Cao Z, Zhang Q, Ouyang W, Ren X, Liang H, Zheng H, Huang Y, Li J, Bolund L, Kristiansen K, Li Y, Zhang Y, Zhang X, Li R, Li S, Yang H, Nielsen R, Wang J, Wang J. 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 329: 75–78

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, He F, Vavrus S J, Johnson A, Wu H B, Zhang W C, Yin Q Z, Ge J Y, Deng C L, Petraglia M D, Guo Z T. 2023. Climatic factors and human population changes in Eurasia between the Last Glacial Maximum and the early Holocene. Glob Planet Change, 221: 104054

    Google Scholar 

  • Yuan K, Ni X, Liu C, Pan Y, Deng L, Zhang R, Gao Y, Ge X, Liu J, Ma X, Lou H, Wu T, Xu S. 2021. Refining models of archaic admixture in Eurasia with ArchaicSeeker 2.0. Nat Commun, 12: 6232

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D D, Bennett M R, Cheng H, Wang L, Zhang H, Reynolds S C, Zhang S, Wang X, Li T, Urban T, Pei Q, Wu Z, Zhang P, Liu C, Wang Y, Wang C, Zhang D, Lawrence Edwards R. 2021. Earliest parietal art: Hominin hand and foot traces from the middle Pleistocene of Tibet. Sci Bull, 66: 2506–2515

    Google Scholar 

  • Zhang D D, Li S H. 2002. Optical dating of Tibetan human hand- and footprints: An implication for the palaeoenvironment of the last glaciation of the Tibetan Plateau. Geophys Res Lett, 29: 1072–1074

    ADS  Google Scholar 

  • Zhang D, Xia H, Chen F, Li B, Slon V, Cheng T, Yang R, Jacobs Z, Dai Q, Massilani D, Shen X, Wang J, Feng X, Cao P, Yang M A, Yao J, Yang J, Madsen D B, Han Y, Ping W, Liu F, Perreault C, Chen X, Meyer M, Kelso J, Pääbo S, Fu Q. 2020. Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau. Science, 370: 584–587

    CAS  PubMed  Google Scholar 

  • Zhang P Q, Zhang X L, Li L H, He W, Dawa W, Jin Y S, Ge J Y, Zwyns N, Wang S J, Gao X. 2022. The peopling of the hinterland of the Tibetan Plateau during the late MIS 3. Sci Bull, 67: 2411–2415

    Google Scholar 

  • Zhang S, Zhao H, Sheng Y W, Zhang J F, Zhang J J, Sun A J, Wang L B, Huang L X, Hou J Z, Chen F H. 2022. Mega-lakes in the northwestern Tibetan Plateau formed by melting glaciers during the last deglacial. Quat Sci Rev, 285: 107528

    Google Scholar 

  • Zhang X J, Witt K E, Banuelos M M, Ko A, Yuan K, Xu S H, Nielsen R, Huerta-Sanchez E. 2021. The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans. Proc Natl Acad Sci USA, 118: e2020803118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X L, Ha B B, Wang S J, Chen Z J, Ge J Y, Long H, He W, Da W, Nian X M, Yi M J, Zhou X Y, Zhang P Q, Jin Y S, Bar-Yosef O, Olsen J W, Gao X. 2018. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science, 362: 1049–1051

    ADS  CAS  PubMed  Google Scholar 

  • Zhang X L, Jin Y S, He W, Yi M J, Xu X. 2020. A consideration of the spatiotemporal distribution of microblade industries on the Tibetan Plateau. Quat Int, 559: 165–173

    Google Scholar 

  • Zhao Y, Tzedakis P C, Li Q, Qin F, Cui Q Y, Liang C, Birks H J B, Liu Y L, Zhang Z Y, Ge J Y, Zhao H, Felde V A, Deng C L, Cai M T, Li H, Ren W H, Wei H C, Yang H F, Zhang J W, Yu Z C, Guo Z T. 2020. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. Sci Adv, 6: eaay6193

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z M, Li R S. 2006. Evolutionary Characteristics of River and Lake Terraces in Different Areas of the Northern Qinghai-Tibet Plateau (in Chinese). Geol Bull China, 25: 221–225

    Google Scholar 

  • Zhou J, Zhou W J, Dong G C, Hou Y Y, Xian F, Zhang L, Tang L, Zhao G Q, Fu Y C. 2020. Cosmogenic 10Be and 26Al exposure dating of Nam Co lake terraces since MIS 5, southern Tibetan Plateau. Quat Sci Rev, 231: 106175

    Google Scholar 

  • Zwyns N, Paine C H, Tsedendorj B, Talamo S, Fitzsimmons K E, Gantumur A, Guunii L, Davakhuu O, Flas D, Dogandžić T, Doerschner N, Welker F, Gillam J C, Noyer J B, Bakhtiary R S, Allshouse A F, Smith K N, Khatsenovich A M, Rybin E P, Byambaa G, Hublin J J. 2019. The northern route for human dispersal in central and northeast Asia: New evidence from the site of Tolbor-16, Mongolia. Sci Rep, 9: 1

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Yan LI and Xuefeng SUN for their important input and discussions, and Hao LONG, Ruiping TANG, and Hao XIE for their invaluable assistance in the field and the lab, as well as Jiequn HUA for his assistance in creating the figures. This study was supported by the National Natural Science Foundation of China (Grant Nos. 41888101, 41977380 and 42072033), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB26000000 and XDA2004010102), the Second Tibetan Plateau Scientific Expedition and Research (Grant No. 2019QZKK0601), and the National Social Science Foundation of China (Grant No. 21@WTK001). Olsen’s participation was supported by the Chinese Academy of Sciences President’s International Fellowship Initiative Award (Grant No. 2018VCA0016) and the Je Tsongkhapa Endowment for Central and Inner Asian Archaeology at the University of Arizona.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junyi Ge or Xiaoling Zhang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, J., Zhang, X., Wang, S. et al. New dating indicates intermittent human occupation of the Nwya Devu Paleolithic site on the high-altitude central Tibetan Plateau during the past 45,000 years. Sci. China Earth Sci. 67, 531–551 (2024). https://doi.org/10.1007/s11430-022-1225-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1225-7

Keywords

Navigation