Skip to main content
Log in

Divergent response of vegetation phenology to extreme temperatures and precipitation of different intensities on the Tibetan Plateau

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Quantifying how climate factors affect vegetation phenology is crucial for understanding climate-vegetation interactions and carbon and water cycles under a changing climate. However, the effects of different intensities of extreme climatic events on vegetation phenology remain poorly understood. Using a long-term solar-induced chlorophyll fluorescence dataset, we investigated the response of vegetation phenology to extreme temperatures and precipitation events of different intensities across the Tibetan Plateau (TP) from 2000 to 2018. We found that the effect of maximum temperature exposure days (TxED) and minimum temperature exposure days (TnED) on the start of the growing season (SOS) was initially delayed and shifted to advance along the increasing temperature gradients. However, the response of the end of the growing season (EOS) to TxED and TnED shifted from an advance to a delay with increasing temperature gradients until the temperature thresholds were reached, above which thresholds produced an unfavorable response to vegetation growth and brought the EOS to an early end. The corresponding maximum and minimum temperature thresholds were 10.12 and 2.54°C, respectively. In contrast, cumulative precipitation (CP) was more likely to advance SOS and delay EOS as the precipitation gradient increased, but the advance of SOS is gradually weakening. Four vegetation types (i.e., forest, shrubland, meadow, and steppe) showed similar trends in response to different climates, but the optimal climatic conditions varied between the vegetation types. Generally, meadow and steppe had lower optimal temperatures and precipitation than forest and shrubland. These findings revealed the divergent responses of vegetation phenology to extreme climate events of different intensities, implying that the SOS will continue to advance with warming, whereas the EOS may undergo a partial transformation from delayed areas to advanced areas with continued warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balzarolo M, Vicca S, Nguy-Robertson A L, Bonal D, Elbers J A, Fu Y H, Grünwald T, Horemans J A, Papale D, Peñuelas J, Suyker A, Verous-traete F. 2016. Matching the phenology of Net Ecosystem Exchange and vegetation indices estimated with MODIS and FLUXNET in-situ observations. Remote Sens Environ, 174: 290–300

    Google Scholar 

  • Che M L, Chen B Z, Innes J L, Wang G Y, Dou X M, Zhou T M, Zhang H F, Yan J W, Xu G, Zhao H W. 2014. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai-Tibetan Plateau from 1982 to 2011. Agric For Meteorol, 189–190: 81–90

    Google Scholar 

  • Chen A P, Huang L, Liu Q, Piao S L. 2021. Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Glob Change Biol, 27: 1942–1951

    Google Scholar 

  • Chen D L, Xu B Q, Yao T, Guo Z, Cui P, Chen F, Zhang T. 2015. As-sessment of past, present and future environmental changes on the Tibetan Plateau. Chin Sci Bull, 60: 3025–3035

    Google Scholar 

  • Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X, Gong P, Yao T, Wu J. 2013. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Change Biol, 19: 2940–2955

    Google Scholar 

  • Chuine I, Morin X, Bugmann H. 2010. Warming, photoperiods, and tree phenology. Science, 329: 277–278

    Google Scholar 

  • Cong N, Shen M, Yang W, Yang Z, Zhang G, Piao S. 2017. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland. Int J Biometeorol, 61: 1433–1444

    Google Scholar 

  • Coumou D, Rahmstorf S. 2012. A decade of weather extremes. Nat Clim Change, 2: 491–496

    Google Scholar 

  • Edwards M, Richardson A J. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430: 881–884

    Google Scholar 

  • Estiarte M, Peñuelas J. 2015. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: Effects on nutrient proficiency. Glob Change Biol, 21: 1005–1017

    Google Scholar 

  • Forkel M, Migliavacca M, Thonicke K, Reichstein M, Schaphoff S, Weber U, Carvalhais N. 2015. Codominant water control on global interannual variability and trends in land surface phenology and greenness. Glob Change Biol, 21: 3414–3435

    Google Scholar 

  • Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha M D, Smith P, van der Velde M, Vicca S, Babst F, Beer C, Buchmann N, Canadell J G, Ciais P, Cramer W, Ibrom A, Miglietta F, Poulter B, Rammig A, Seneviratne S I, Walz A, Wattenbach M, Zavala M A, Zscheischler J. 2015. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob Change Biol, 21: 2861–2880

    Google Scholar 

  • Frankenberg C, O’Dell C, Berry J, Guanter L, Joiner J, Köhler P, Pollock R, Taylor T E. 2014. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens Environ, 147: 1–12

    Google Scholar 

  • Fu Y H, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñuelas J, Song Y, Vitasse Y, Zeng Z, Janssens I A. 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526: 104–107

    Google Scholar 

  • Fu Y S, Li X X, Zhou X C, Geng X J, Guo Y H, Zhang Y R. 2020. Progress in plant phenology modeling under global climate change. Sci China Earth Sci, 63: 1237–1247

    Google Scholar 

  • Guanter L, Frankenberg C, Dudhia A, Lewis P E, Gómez-Dans J, Kuze A, Suto H, Grainger R G. 2012. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens Environ, 121: 236–251

    Google Scholar 

  • Hanson C E, Palutikof J P, Dlugolecki A, Giannakopoulos C. 2006. Bridging the gap between science and the stakeholder: The case of climate change research. Clim Res, 31: 121–133

    Google Scholar 

  • He J, Yang K, Tang W, Lu H, Qin J, Chen Y, Li X. 2020. The first highresolution meteorological forcing dataset for land process studies over China. Sci Data, 7: 25

    Google Scholar 

  • Huang M, Piao S, Ciais P, Peñuelas J, Wang X, Keenan T F, Peng S, Berry J A, Wang K, Mao J, Alkama R, Cescatti A, Cuntz M, De Deurwaerder H, Gao M, He Y, Liu Y, Luo Y, Myneni R B, Niu S, Shi X, Yuan W, Verbeeck H, Wang T, Wu J, Janssens I A. 2019. Air temperature optima of vegetation productivity across global biomes. Nat Ecol Evol, 3: 772–779

    Google Scholar 

  • Hwang T, Band L E, Miniat C F, Song C, Bolstad P V, Vose J M, Love J P. 2014. Divergent phenological response to hydroclimate variability in forested mountain watersheds. Glob Change Biol, 20: 2580–2595

    Google Scholar 

  • Joiner J, Yoshida Y, Vasilkov A P, Schaefer K, Jung M, Guanter L, Zhang Y, Garrity S, Middleton E M, Huemmrich K F, Gu L, Belelli March-esini L. 2014. The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sens Environ, 152: 375–391

    Google Scholar 

  • Kong D D, Zhang Q, Huang W B, Gu X H. 2017. Vegetation phenology change in Tibetan Plateau from 1982 to 2013 and its related meteorological factors. Acta Geogr Sin, 72: 14

    Google Scholar 

  • Li P, Liu Z L, Zhou X L, Xie B G, Li Z W, Luo Y P, Zhu Q A, Peng C H. 2021. Combined control of multiple extreme climate stressors on autumn vegetation phenology on the Tibetan Plateau under past and future climate change. Agric For Meteorol, 308–309: 108571

    Google Scholar 

  • Li P, Peng C H, Wang M, Luo Y P, Li M X, Zhang K, Zhang D L, Zhu Q A. 2018. Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Sci Total Environ, 637–638: 855–864

    Google Scholar 

  • Li X, Jiang L, Meng F, Wang S, Niu H, Iler A M, Duan J, Zhang Z, Luo C, Cui S, Zhang L, Li Y, Wang Q, Zhou Y, Bao X, Dorji T, Li Y, Peñuelas J, Du M, Zhao X, Zhao L, Wang G. 2016. Responses of sequential and hierarchical phenological events to warming and cooling in alpine meadows. Nat Commun, 7: 12489

    Google Scholar 

  • Li X, Xiao J F. 2020. Global climatic controls on interannual variability of ecosystem productivity: Similarities and differences inferred from solar-induced chlorophyll fluorescence and enhanced vegetation index. Agric For Meteorol, 288–289: 108018

    Google Scholar 

  • Meng F, Huang L, Chen A, Zhang Y, Piao S. 2021. Spring and autumn phenology across the Tibetan Plateau inferred from normalized difference vegetation index and solar-induced chlorophyll fluorescence. Big Earth Data, 5: 182–200

    Google Scholar 

  • Niu S, Luo Y, Fei S, Yuan W, Schimel D, Law B E, Ammann C, Altaf Arain M, Arneth A, Aubinet M, Barr A, Beringer J, Bernhofer C, Andrew Black T, Buchmann N, Cescatti A, Chen J, Davis K J, Dellwik E, Desai A R, Etzold S, Francois L, Gianelle D, Gielen B, Goldstein A, Groenendijk M, Gu L, Hanan N, Helfter C, Hirano T, Hollinger D Y, Jones M B, Kiely G, Kolb T E, Kutsch W L, Lafleur P, Lawrence D M, Li L, Lindroth A, Litvak M, Loustau D, Lund M, Marek M, Martin T A, Matteucci G, Migliavacca M, Montagnani L, Moors E, William Munger J, Noormets A, Oechel W, Olejnik J, U K T P, Pilegaard K, Rambal S, Raschi A, Scott R L, Seufert G, Spano D, Stoy P, Sutton M A, Varlagin A, Vesala T, Weng E, Wohlfahrt G, Yang B, Zhang Z, Zhou X. 2012. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol, 194: 775–783

    Google Scholar 

  • Pan N, Feng X, Fu B, Wang S, Ji F, Pan S. 2018. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sens Environ, 214: 59–72

    Google Scholar 

  • Peng S, Piao S, Ciais P, Myneni R B, Chen A, Chevallier F, Dolman A J, Janssens I A, Peñuelas J, Zhang G, Vicca S, Wan S, Wang S, Zeng H. 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501: 88–92

    Google Scholar 

  • Peñuelas J, Filella I, Zhang X, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J. 2004. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol, 161: 837–846

    Google Scholar 

  • Piao S L, Fang J Y, Zhou L M, Ciais P, Zhu B. 2006. Variations in satellite-derived phenology in China’s temperate vegetation. Glob Change Biol, 12: 672–685

    Google Scholar 

  • Piao S L, Liu Q, Chen A P, Janssens I A, Fu Y S, Dai J H, Liu L L, Lian X, Shen M G, Zhu X L. 2019a. Plant phenology and global climate change: Current progresses and challenges. Glob Change Biol, 25: 1922–1940

    Google Scholar 

  • Piao S L, Nan H J, Huntingford C, Ciais P, Friedlingstein P, Sitch S, Peng S S, Ahlstrom A, Canadell J G, Cong N, Levis S, Levy P E, Liu L L, Lomas M R, Mao J F, Myneni R B, Peylin P, Poulter B, Shi X Y, Yin G D, Viovy N, Wang T, Wang X H, Zaehle S, Zeng N, Zeng Z Z, Chen A P. 2014. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat Commun, 5: 5018

    Google Scholar 

  • Piao S L, Zhang X P, Chen A P, Liu Q, Lian X, Wang X H, Peng S S, Wu X C. 2019b. The impacts of climate extremes on the terrestrial carbon cycle: A review. Sci China Earth Sci, 62: 1551–1563

    Google Scholar 

  • Ram J, Singh S P, Singh J S. 1988. Community level phenology of grassland above treeline in central Himalaya, India. Arctic Alpine Res, 20: 325–332

    Google Scholar 

  • Ren P X, Liu Z L, Zhou X L, Peng C H, Xiao J F, Wang S H, Li X, Li P. 2021. Strong controls of daily minimum temperature on the autumn photosynthetic phenology of subtropical vegetation in China. For Ecosyst, 8: 31

    Google Scholar 

  • Schwartz M D, Ahas R, Aasa A. 2006. Onset of spring starting earlier across the Northern Hemisphere. Glob Change Biol, 12: 343–351

    Google Scholar 

  • Shen M G, Piao S L, Cong N, Zhang G X, Jassens I A. 2015a. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob Change Biol, 21: 3647–3656

    Google Scholar 

  • Shen M G, Piao S L, Dorji T, Liu Q, Cong N, Chen X Q, An S, Wang S P, Wang T, Zhang G X. 2015b. Plant phenological responses to climate change on the Tibetan Plateau: Research status and challenges. Natl Sci Rev, 2: 454–467

    Google Scholar 

  • Shen M G, Wang S P, Jiang N, Sun J P, Cao R Y, Ling X F, Fang B, Zhang L, Zhang L H, Xu X Y, Lv W W, Li B L, Sun Q L, Meng F D, Jiang Y H, Dorji T, Fu Y S, Iler A, Vitasse Y, Steltzer H, Ji Z M, Zhao W W, Piao S L, Fu B J. 2022. Plant phenology changes and drivers on the Qinghai-Tibetan Plateau. Nat Rev Earth Environ, 3: 633–651

    Google Scholar 

  • Shen M G, Zhang G X, Cong N, Wang S P, Kong W D, Piao S L. 2014. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau. Agric For Meteorol, 189–190: 71–80

    Google Scholar 

  • Vrieling A, Meroni M, Darvishzadeh R, Skidmore A K, Wang T, Zurita-Milla R, Oosterbeek K, O’Connor B, Paganini M. 2018. Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote Sens Environ, 215: 517–529

    Google Scholar 

  • Wang L X, Chen H L, Li Q, Yu W D. 2010. Research advances in plant phenology and climate. Acta Ecol Sin, 30: 447–454

    Google Scholar 

  • Wang M, Li P, Peng C, Xiao J, Zhou X, Luo Y, Zhang C. 2022. Divergent responses of autumn vegetation phenology to climate extremes over northern middle and high latitudes. Glob Ecol Biogeogr, 31: 2281–2296

    Google Scholar 

  • Wang S H, Ju W M, Penuelas J, Cescatti A, Zhou Y Y, Fu Y S, Huete A, Liu M, Zhang Y G. 2019. Urban-rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Nat Ecol Evol, 3: 1076–1085

    Google Scholar 

  • White M A, de Beurs K M, Didan K, Inouye D W, Richardson A D, Jensen O P, O’Keefe J, Zhang G, Nemani R R, van Leeuwen W J D, Brown J F, de Wit A, Schaepman M, Lin X, Dettinger M, Bailey A S, Kimball J, Schwartz M D, Baldocchi D D, Lee J T, Lauenroth W K. 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob Change Biol, 15: 2335–2359

    Google Scholar 

  • White M A, Thornton P E, Running S W. 1997. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob Biogeochem Cycle, 11: 217–234

    Google Scholar 

  • Wu C Y, Wang X Y, Wang H J, Ciais P, Peñuelas J, Myneni R B, Desai A R, Gough C M, Gonsamo A, Black A T, Jassal R S, Ju W M, Yuan W P, Fu Y S, Shen M G, Li S H, Liu R G, Chen J M, Ge Q S. 2018. Contrasting responses of autumn-leaf senescence to daytime and nighttime warming. Nat Clim Change, 8: 1092–1096

    Google Scholar 

  • Wu G, Duan A, Zhang X, Liu Y, Ma Y, Yang K. 2013. Extreme weather and climate changes and its environmental effects over the Tibetan Plateau. Chin J Nat, 35: 167–171

    Google Scholar 

  • Wu X C, Guo W C, Liu H Y, Li X Y, Peng C H, Allen C D, Zhang C C, Wang P, Pei T T, Ma Y J, Tian Y H, Song Z L, Zhu W Q, Wang Y, Li Z S, Chen D L. 2019. Exposures to temperature beyond threshold disproportionately reduce vegetation growth in the northern hemisphere. Natl Sci Rev, 6: 786–795

    Google Scholar 

  • Xia C F, Li J, Liu Q H. 2013. Review of advances in vegetation phenology monitoring by remote sensing. J Remote Sens, 17: 1–16

    Google Scholar 

  • Xie Y, Wang X, Silander J A. 2015. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. Proc Natl Acad Sci USA, 112: 13585–13590

    Google Scholar 

  • Yang Z Y, Shen M G, Jia S G, Guo L, Yang W, Wang C, Chen X H, Chen J. 2017. Asymmetric responses of the end of growing season to daily maximum and minimum temperatures on the Tibetan Plateau. J Geo-phys Res-Atmos, 122: 13,278–13,287

    Google Scholar 

  • Zani D, Crowther T W, Mo L, Renner S S, Zohner C M. 2020. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science, 370: 1066–1071

    Google Scholar 

  • Zelikova T J, Williams D G, Hoenigman R, Blumenthal D M, Morgan J A, Pendall E, Guo D. 2015. Seasonality of soil moisture mediates responses of ecosystem phenology to elevated CO2 and warming in a semi-arid grassland. J Ecol, 103: 1119–1130

    Google Scholar 

  • Zhang Y, Gentine P, Luo X, Lian X, Liu Y, Zhou S, Michalak A M, Sun W, Fisher J B, Piao S, Keenan T F. 2022. Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nat Commun, 13: 4875

    Google Scholar 

  • Zhang Y, Xiao X, Zhang Y, Wolf S, Zhou S, Joiner J, Guanter L, Verma M, Sun Y, Yang X, Paul-Limoges E, Gough C M, Wohlfahrt G, Gioli B, van der Tol C, Yann N, Lund M, de Grandcourt A. 2018. On the relationship between sub-daily instantaneous and daily total gross primary production: Implications for interpreting satellite-based SIF retrievals. Remote Sens Environ, 205: 276–289

    Google Scholar 

  • Zhou S, Zhang Y, Caylor K K, Luo Y, Xiao X, Ciais P, Huang Y, Wang G. 2016. Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. Agric For Meteorol, 226–227: 246–256

    Google Scholar 

  • Zhu W, Tian H, Xu X, Pan Y, Chen G, Lin W. 2012. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Glob Ecol Biogeogr, 21: 260–271

    Google Scholar 

Download references

Acknowledgements

We thank anonymous reviewers for their valuable suggestions on our manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41901117, U22A20570) and the Science and Technology Innovation Program of Hunan Province (Grant No. 2022RC4027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Li or Jiayi Tang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Li, P., Ren, P. et al. Divergent response of vegetation phenology to extreme temperatures and precipitation of different intensities on the Tibetan Plateau. Sci. China Earth Sci. 66, 2200–2210 (2023). https://doi.org/10.1007/s11430-022-1156-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1156-1

Keywords

Navigation