Skip to main content
Log in

Probing the interseismic locking state of the Xianshuihe fault based on a viscoelastic deformation model

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The interseismic locking state of tectonic faults is essential for regional seismic hazard assessments. However, it is challenging to obtain this parameter reliably due to the weak deformation and complex model configurations. To better probe the fault locking state, more reliable physical models and well-covered observations are required. Here we investigate the locking state of the Xianshuihe fault based on a new-developed viscoelastic deformation model. Meanwhile, we combine GPS velocities from 13 new near-field stations and existing stations in this region to improve the spatial resolution. Similar to the theoretical predictions, our results indicate that the elastic model will clearly overestimate the fault locking depth and seismic moment accumulation rate, and the fault slip rate inferred from the elastic model is slightly lower than that from the viscoelastic model. Relying on the locking distribution inferred from the viscoelastic model, we identify four potential asperities on the Xianshuihe fault. More importantly, we find a clear spatial correlation between the fault locking distribution and the rupture extent of historical earthquakes, which indicates that the fault locking state may control the rupture extent and thus the magnitude of earthquakes. In addition, our results show that the 2022 M6.8 Luding earthquake only ruptured the south part of a potential asperity, and the accumulated energy in the northern unruptured area is equivalent to an Mw6.9 earthquake, where the seismic hazard deserves special attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen C R, Luo Z, Qian H, Wen X, Zhou H, Huang W. 1991. GSA Bull, 103: 1178–1199

    Article  Google Scholar 

  • Altamimi Z, Rebischung P, Métivier L, Collilieux X. 2016. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res-Solid Earth, 121: 6109–6131

    Article  Google Scholar 

  • Bai M, Chevalier M L, Leloup P H, Li H, Pan J, Replumaz A, Wang S, Li K, Wu Q, Liu F, Zhang J. 2021. Spatial slip rate distribution along the SE Xianshuihe fault, eastern Tibet, and earthquake hazard assessment. Tectonics, 40: e2021TC006985

    Article  Google Scholar 

  • Bai M, Chevalier M L, Pan J, Replumaz A, Leloup P H, Métois M, Li H. 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth Planet Sci Lett, 485: 19–31

    Article  Google Scholar 

  • Chen G H, Xu X W, Wen X Z, Wang Y L. 2008. Kinematical transformation and slip partitioning of northern to eastern active boundary belt of Sichuan-Yunnan block (in Chinese). Seismol Geol, 30: 58–85

    Google Scholar 

  • Deng Q D, Zhang P Z, Ran Y K, Yang X P, Min W, Chen L C. 2003. Basic characteristics of active tectonics of China. Sci China Ser D-Earth Sci, 46: 356–372

    Article  Google Scholar 

  • Diao F, Wang R, Wang Y, Xiong X, Walter T R. 2018. Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake. Earth Planet Sci Lett, 495: 202–212

    Article  Google Scholar 

  • Diao F, Wang R, Zhu Y, Xiong X. 2022. Revisiting the fault locking of the Central Himalayan Thrust with a viscoelastic earthquake-cycle deformation model. Seismol Res Lett, 93: 193–200

    Article  Google Scholar 

  • Diao F, Xiong X, Wang R, Walter T R, Wang Y, Wang K. 2019. Slip rate variation along the Kunlun fault (Tibet): Results from new GPS observations and a viscoelastic earthquake-cycle deformation model. Geophys Res Lett, 46: 2524–2533

    Article  Google Scholar 

  • Ge W P, Shen Z K, Molnar P, Wang M, Zhang P Z, Yuan D Y. 2022. GPS determined asymmetric deformation across central Altyn Tagh fault reveals rheological structure of northern Tibet. J Geophys Res-Solid Earth, 127: e2022JB024216

    Article  Google Scholar 

  • Han B Q, Liu Z J, Chen B, Li Z H, Yu C, Zhang Y, Peng J B. 2022. Coseismic deformation and slip distribution of the 2022 Luding Mw6.6 earthquake revealed by InSAR observations (in Chinese). Geomat Inform Sci Wuhan Univ, 48: 36–46

    Google Scholar 

  • Herring T A, King R W, McClusky S C. 2010a. GAMIT reference manual, Global Kalman filter VLBI and GPS analysis program, Release 10.4. Cambridge, MA: Massachusetts Institute of Technology

    Google Scholar 

  • Herring T A, King R W, McClusky S C. 2010b. GAMIT reference manual, GPS Analysis at MIT, Release 10.4. Cambridge, MA: Massachusetts Institute of Technology

    Google Scholar 

  • Huang M H, Bürgmann R, Freed A M. 2014. Probing the lithospheric rheology across the eastern margin of the Tibetan Plateau. Earth Planet Sci Lett, 396: 88–96

    Article  Google Scholar 

  • Jiang G, Xu X, Chen G, Liu Y, Fukahata Y, Wang H, Yu G, Tan X, Xu C. 2015. Geodetic imaging of potential seismogenic asperities on the Xianshuihe-Anninghe-Zemuhe fault system, southwest China, with a new 3-D viscoelastic interseismic coupling model. J Geophys Res-Solid Earth, 120: 1855–1873

    Article  Google Scholar 

  • Jiang Z, Wang M, Wang Y, Wu Y, Che S, Shen Z K, Bürgmann R, Sun J, Yang Y, Liao H, Li Q. 2014. GPS constrained coseismic source and slip distribution of the 2013 Mw6.6 Lushan, China, earthquake and its tectonic implications. Geophys Res Lett, 41: 407–413

    Article  Google Scholar 

  • Johnson K M, Hilley G E, Bürgmann R. 2007. Influence of lithosphere viscosity structure on estimates of fault slip rate in the Mojave region of the San Andreas fault system. J Geophys Res, 112: B07408

    Article  Google Scholar 

  • Li S, Fukuda J, Oncken O. 2020. Geodetic evidence of time-dependent viscoelastic interseismic deformation driven by megathrust locking in the southwest Japan subduction zone. Geophys Res Lett, 47: e85551

    Google Scholar 

  • Li S, Moreno M, Bedford J, Rosenau M, Oncken O. 2015. Revisiting viscoelastic effects on interseismic deformation and locking degree: A case study of the Peru-North Chile subduction zone. J Geophys Res-Solid Earth, 120: 4522–4538

    Article  Google Scholar 

  • Li Y C, Nocquet J M, Shan X J, Jian H Z. 2021. Heterogeneous interseismic coupling along the Xianshuihe- Xiaojiang fault system, eastern Tibet. J Geophys Res-Solid Earth, 126: e2020JB021187

    Article  Google Scholar 

  • Li Y C, Zhao D Z, Shan X J, Gao Z Y, Huang X, Gong W Y. 2022. Coseismic slip model of the 2022 Mw6.7 Luding (Tibet) earthquake: Pre- and post-earthquake interactions with surrounding major faults. Geophys Res Lett, 49: e2022GL102403

    Article  Google Scholar 

  • Li Y X, Bürgmann R. 2021. Partial coupling and earthquake potential along the Xianshuihe Fault, China. J Geophys Res-Solid Earth, 126: e2020JB021406

    Article  Google Scholar 

  • Li Y X, Yang G H, Li Z, Guo L Q, Huang C, Zhu W Y, Fu Y, Wang Q, Jiang Z S, Wang M. 2003. Motion and strain state of active blocks in the continent of China (in Chinese). Sci China Ser D-Earth Sci, 33(S1): 65–81

    Google Scholar 

  • Loveless J P, Meade B J. 2011. Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations. Earth Planet Sci Lett, 303: 11–24

    Article  Google Scholar 

  • Ma J, Zhou B, Wang M, Guo P, Liu J, Ha G, Fan J. 2022. Surface rupture and slip distribution along the Zheduotang Fault in the Kangding Section of the Xianshuihe Fault Zone. Lithosphere, 2021: 6500707

    Article  Google Scholar 

  • Meade B J. 2007. Present-day kinematics at the India-Asia collision zone. Geology, 35: 81

    Article  Google Scholar 

  • Qiao X, Zhou Y. 2021. Geodetic imaging of shallow creep along the Xianshuihe fault and its frictional properties. Earth Planet Sci Lett, 567: 117001

    Article  Google Scholar 

  • Ren J, Xu X, Yeats R S, Zhang S. 2013. Latest Quaternary paleoseismology and slip rates of the Longriba fault zone, eastern Tibet: Implications for fault behavior and strain partitioning. Tectonics, 32: 216–238

    Article  Google Scholar 

  • Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321: 1054–1058

    Article  Google Scholar 

  • Savage J C, Burford R O. 1973. Geodetic determination of relative plate motion in central California. J Geophys Res, 78: 832–845

    Article  Google Scholar 

  • Savage J C, Prescott W H. 1978. Asthenosphere readjustment and the earthquake cycle. J Geophys Res, 83: 3369–3376

    Article  Google Scholar 

  • Savage J C, Gan W, Svarc J L. 2001. Strain accumulation and rotation in the Eastern California Shear Zone. J Geophys Res, 106: 21995–22007

    Article  Google Scholar 

  • Savage J C. 1983. A dislocation model of strain accumulation and release at a subduction zone. J Geophys Res, 88: 4984–4996

    Article  Google Scholar 

  • Shan B, Xiong X, Wang R, Zheng Y, Yang S. 2013. Coulomb stress evolution along Xianshuihe–Xiaojiang Fault System since 1713 and its interaction with Wenchuan earthquake, May 12, 2008. Earth Planet Sci Lett, 377–378: 199–210

    Article  Google Scholar 

  • Shen Z K, Lü J, Wang M, Bürgmann R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J Geophys Res, 110: B11409

    Article  Google Scholar 

  • Tapponnier P, Molnar P. 1976. Slip-line field theory and large-scale continental tectonics. Nature, 264: 319–324

    Article  Google Scholar 

  • Tapponnier P, Xu Z Q, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294: 1671–1677

    Article  Google Scholar 

  • Thatcher W. 2009. How the continents deform: The evidence from tectonic geodesy. Annu Rev Earth Planet Sci, 37: 237–262

    Article  Google Scholar 

  • Thompson T B, Plesch A, Shaw J H, Meade B J. 2015. Rapid slip-deficit rates at the eastern margin of the Tibetan Plateau prior to the 2008 Mw7.9 Wenchuan earthquake. Geophys Res Lett, 42: 1677–1684

    Article  Google Scholar 

  • Tong X, Smith-Konter B, Sandwell D T. 2014. Is there a discrepancy between geological and geodetic slip rates along the San Andreas Fault System? J Geophys Res-Solid Earth, 119: 2518–2538

    Article  Google Scholar 

  • Walters R J, Parsons B, Wright T J. 2014. Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the block-like behavior of Eastern Anatolia. J Geophys Res-Solid Earth, 119: 5215–5234

    Article  Google Scholar 

  • Wang K, Hu Y, He J. 2012. Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature, 484: 327–332

    Article  Google Scholar 

  • Wang K, Zhu Y, Nissen E, Shen Z K. 2021. On the relevance of geodetic deformation rates to earthquake potential. Geophys Res Lett, 48: e93231

    Google Scholar 

  • Wang M, Shen Z K, Wang Y, Bürgmann R, Wang F, Zhang P Z, Liao H, Zhang R, Wang Q, Jiang Z, Chen W, Hao M, Li Y, Gu T, Tao W, Wang K, Xue L. 2021. Postseismic deformation of the 2008 Wenchuan earthquake illuminates lithospheric rheological structure and dynamics of eastern Tibet. J Geophys Res-Solid Earth, 126: e2021JB022399

    Article  Google Scholar 

  • Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J Geophys Res-Solid Earth, 125: e2019JB018774

    Article  Google Scholar 

  • Wang Q, Qiao X, Lan Q, Jeffrey F, Yang S, Xu C, Yang Y, You X, Tan K, Chen G. 2011. Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan. Nat Geosci, 4: 634–640

    Article  Google Scholar 

  • Wang R, Diao F, Hoechner A. 2013. SDM—A geodetic inversion code incorporating with layered crust structure and curved fault geometry. Geophys Res Abstract, 15: EGU2013–2411

    Google Scholar 

  • Wang W, Qiao X, Ding K. 2021. Present-day kinematics in southeastern Tibet inferred from GPS measurements. J Geophys Res-Solid Earth, 126: e2020JB021305

    Article  Google Scholar 

  • Wang Y, Wang M, Shen Z K. 2017. Block-like versus distributed crustal deformation around the northeastern Tibetan Plateau. J Asian Earth Sci, 140: 31–47

    Article  Google Scholar 

  • Wen X, Ma S, Xu X, He Y. 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Phys Earth Planet Inter, 168: 16–36

    Article  Google Scholar 

  • Weng H, Yang H. 2017. Seismogenic width controls aspect ratios of earthquake ruptures. Geophys Res Lett, 44: 2725–2732

    Article  Google Scholar 

  • Weng H, Yang H. 2018. Constraining frictional properties on fault by dynamic rupture simulations and near-field observations. J Geophys Res-Solid Earth, 123: 6658–6670

    Article  Google Scholar 

  • Xie Z, Zheng Y, Liu C, Shan B, Riaz M S, Xiong X. 2017. An integrated analysis of source parameters, seismogenic structure, and seismic hazards related to the 2014 Ms6.3 Kangding earthquake, China. Tectonophysics, 712–713: 1–9

    Article  Google Scholar 

  • Yan B, Lin A. 2015. Systematic deflection and offset of the Yangtze River drainage system along the strike-slip Ganzi-Yushu-Xianshuihe Fault Zone, Tibetan Plateau. J Geodyn, 87: 13–25

    Article  Google Scholar 

  • Yang H F, Yao S L, Chen X. 2022. Rupture propagation on heterogeneous fault: Challenges for predicting earthquake magnitude (in Chinese). Chin Sci Bull, 67: 1390–1403

    Article  Google Scholar 

  • Yang H, Yao S, He B, Newman AV. 2019. Earthquake rupture dependence on hypocentral location along the Nicoya Peninsula subduction mega-thrust. Earth Planet Sci Lett, 520: 10–17

    Article  Google Scholar 

  • Yang Y, Liu M. 2002. Deformation of convergent plates: Evidence from discrepancies between GPS velocities and rigid-plate motions. Geophys Res Lett, 29: 110–1–110–4

    Article  Google Scholar 

  • Yang Z G, Dai D Q, Zhang Y, Zhang X M, Liu J. 2022. Rupture process and aftershock mechanisms of the 2022 Luding M6.8 earthquake in Sichuan, China. Earthq Sci, 35: 1–2

    Article  Google Scholar 

  • Zhang J, Wen X Z, Cao J L, Yan W, Yang Y L, Su Q. 2018. Surface creep and slip-behavior segmentation along the northwestern Xianshuihe fault zone of southwestern China determined from decades of fault-crossing short-baseline and short-level surveys. Tectonophysics, 722: 356–372

    Article  Google Scholar 

  • Zhang L, Su J, Wang W, Fang L, Wu J. 2022. Deep fault slip characteristics in the Xianshuihe-Anninghe-Daliangshan Fault junction region (eastern Tibet) revealed by repeating micro-earthquakes. J Asian Earth Sci, 227: 105115

    Article  Google Scholar 

  • Zhang L, Zhou Y, Zhang X, Zhu A, Li B, Wang S, Liang S, Jiang C, Wu J, Li Y, Su J, Yan L, Fang L. 2023. 2022 Mw6.6 Luding, China, Earthquake: A strong continental event illuminating the Moxi seismic gap. Seismol Res Lett, https://doi.org/10.1785/0220220383

  • Zhang P Z, Deng Q D, Zhang G M, Ma J, Gan W J, Min W, Mao F Y, Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Sci China Ser D-Earth Sci, 46(Suppl 2): 13–24

    Article  Google Scholar 

  • Zhang P Z, Wen X Z, Shen Z K, Chen J H. 2010. Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Annu Rev Earth Planet Sci, 38: 353–382

    Article  Google Scholar 

  • Zhang P Z. 2013. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584: 7–22

    Article  Google Scholar 

  • Zhao J, Jiang Z S, Niu A F, Liu J, Wu Y Q, Wei W X, Liu X X. 2015. Study on dynamic characteristics of fault locking and fault slip deficit in the eastern boundary of the Sichuan-Yunnan rhombic block (in Chinese). Chin J Geophys, 58: 872–885

    Google Scholar 

  • Zheng G, Wang H, Wright T J, Lou Y, Zhang R, Zhang W, Shi C, Huang J, Wei N. 2017. Crustal deformation in the India-Eurasia collision Zong from 25 years of GPS measurements. J Geophys Res-Solid Earth, 122: 9290–9312

    Article  Google Scholar 

  • Zhu Y, Diao F, Wang R, Hao M, Shao Z, Xiong X. 2022. Crustal shortening and rheological behavior across the Longmen Shan fault, eastern margin of the Tibetan Plateau. Geophys Res Lett, 49: e98814

    Article  Google Scholar 

  • Zhu Y, Wang K, He J. 2020. Effects of earthquake recurrence on localization of interseismic deformation around locked strike-slip faults. J Geophys Res-Solid Earth, 125: e2020JB019817

    Article  Google Scholar 

Download references

Acknowledgements

We thank the responsible editor and three reviewers for their valuable comments. We thank Yashan FENG for polishing the paper. The figures are drawn with the Generic Mapping Tools (GMT) software. This study was supported by the National Key Research and Development Program of China (Grant No. 2017YFC1500501) and the National Natural Science Foundation of China (Grant No. 41731072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faqi Diao.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Diao, F., Chen, F. et al. Probing the interseismic locking state of the Xianshuihe fault based on a viscoelastic deformation model. Sci. China Earth Sci. 67, 134–145 (2024). https://doi.org/10.1007/s11430-022-1152-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1152-2

Keywords

Navigation