Skip to main content
Log in

The decadal abrupt change in the global land vapor pressure deficit

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The vapor pressure deficit (VPD) is an important variable used to characterize atmospheric aridity. This paper analyses the spatial and temporal characteristics of the decadal abrupt change (DAC) in the global land VPD after 1980 using monthly scale data from the Climatic Research Unit. The results show that 60.5% of the global land area underwent a significantly increased decadal abrupt change (IDAC) in the VPD, and the persistent IDAC of the VPD was obvious in the middle and low latitudes of Eurasia, Africa and parts of South America but not in central North America or Western Siberia. From 1980 to 2020, most regions experienced no more than two persistent IDACs, while more than two significant increases occurred mainly around the Mediterranean and in eastern South America. The persistent IDAC occurred relatively early in the middle and low latitudes of Eurasia, Africa, and eastern South America and after 2000 in the high latitude regions, Eastern Europe, and near the Qinghai-Tibet Plateau. The regions where the persistent IDAC lasted longer than 10 years mainly included North Africa, West Asia, eastern South America, and parts of East Asia, indicating that the persistent increases in atmospheric aridity in these regions were obvious. In general, the persistent IDAC that began in 1993–2000 was significantly more than that occurred in other periods and lasted longer than that before 1990, suggesting that the land area experiencing an abrupt increase has an expansion after the 1990s and that the role of water limitation in this persistent IDAC in Central Asia and most of China strengthened. In addition, the VPD showed another large-scale persistent IDAC over the global land region in 2009, indicating that global atmospheric aridity intensified over the last decade. At the same time, in a few global regions, the VPD has exhibited decreased decadal abrupt changes (DDACs) with durations shorter than 2 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen R G, Pereira L S, Raes D, Smith M. 1998. Crop evapotranspiration—Guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56. Rome: Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Barkhordarian A, Bowman K W, Cressie N, Jewell J, Liu J. 2021. Emergent constraints on tropical atmospheric aridity-carbon feedbacks and the future of carbon sequestration. Environ Res Lett, 16: 114008

    Article  Google Scholar 

  • Barkhordarian A, Saatchi S S, Behrangi A, Loikith P C, Mechoso C R. 2019. A recent systematic increase in vapor pressure deficit over tropical South America. Sci Rep, 9: 15331

    Article  Google Scholar 

  • Berg A, McColl K A. 2021. No projected global drylands expansion under greenhouse warming. Nat Clim Chang, 11: 331–337

    Article  Google Scholar 

  • Denissen J M C, Teuling A J, Pitman A J, Koirala S, Migliavacca M, Li W, Reichstein M, Winkler A J, Zhan C, Orth R. 2022. Widespread shift from ecosystem energy to water limitation with climate change. Nat Clim Chang, 12: 677–684

    Article  Google Scholar 

  • Ficklin D L, Novick K A. 2017. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J Geophys Res-Atmos, 122: 2061–2079

    Article  Google Scholar 

  • Friedlingstein P, Jones M W, O’Sullivan M, Andrew R M, Bakker D C E, Hauck J, Le Quéré C, Peters G P, Peters W, Pongratz J, Sitch S, Canadell J G, Ciais P, Jackson R B, Alin S R, Anthoni P, Bates N R, Becker M, Bellouin N, Bopp L, Chau T T T, Chevallier F, Chini L P, Cronin M, Currie K I, Decharme B, Djeutchouang L M, Dou X, Evans W, Feely R A, Feng L, Gasser T, Gilfillan D, Gkritzalis T, Grassi G, Gregor L, Gruber N, Gürses Ö, Harris I, Houghton R A, Hurtt G C, Iida Y, Ilyina T, Luijkx I T, Jain A, Jones S D, Kato E, Kennedy D, Klein Goldewijk K, Knauer J, Korsbakken J I, Körtzinger A, Landschützer P, Lauvset S K, Lefèvre N, Lienert S, Liu J, Marland G, McGuire P C, Melton J R, Munro D R, Nabel J E M S, Nakaoka S I, Niwa Y, Ono T, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rödenbeck C, Rosan T M, Schwinger J, Schwingshackl C, Séférian R, Sutton A J, Sweeney C, Tanhua T, Tans P P, Tian H, Tilbrook B, Tubiello F, van der Werf G R, Vuichard N, Wada C, Wanninkhof R, Watson A J, Willis D, Wiltshire A J, Yuan W, Yue C, Yue X, Zaehle S, Zeng J. 2022. Global carbon budget 2021. Earth Syst Sci Data, 14: 1917–2005

    Article  Google Scholar 

  • Fu C B, Wang Q. 1992. The definition and detection of the abrupt climatic change (in Chinese). Chin J Atmos Sci, 16: 482–493

    Google Scholar 

  • Fu Q, Feng S. 2014. Responses of terrestrial aridity to global warming. J Geophys Res-Atmos, 119: 7863–7875

    Article  Google Scholar 

  • Green J K, Berry J, Ciais P, Zhang Y, Gentine P. 2020. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci Adv, 6: eabb7232

    Article  Google Scholar 

  • Grossiord C, Buckley T N, Cernusak L A, Novick K A, Poulter B, Siegwolf R T W, Sperry J S, McDowell N G. 2020. Plant responses to rising vapor pressure deficit. New Phytol, 226: 1550–1566

    Article  Google Scholar 

  • Harris I, Osborn T J, Jones P, Lister D. 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data, 7: 109

    Article  Google Scholar 

  • He B, Chen C, Lin S, Yuan W, Chen H W, Chen D, Zhang Y, Guo L, Zhao X, Liu X, Piao S, Zhong Z, Wang R, Tang R. 2022. Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks. Natl Sci Rev, 9: 8

    Article  Google Scholar 

  • Huang J Y. 2016. Statistical Analysis and Forecasting Methods in Meteorology (in Chinese). 4th ed. Beijing: China Meteorological Press

    Google Scholar 

  • Humphrey V, Berg A, Ciais P, Gentine P, Jung M, Reichstein M, Seneviratne S I, Frankenberg C. 2021. Soil moisture-atmosphere feedback dominates land carbon uptake variability. Nature, 592: 65–69

    Article  Google Scholar 

  • Jung M, Reichstein M, Ciais P, Seneviratne S I, Sheffield J, Goulden M L, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman A J, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law B E, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson A D, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467: 951–954

    Article  Google Scholar 

  • Konapala G, Mishra A K, Wada Y, Mann M E. 2020. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat Commun, 11: 3044

    Article  Google Scholar 

  • Liu L, Gudmundsson L, Hauser M, Qin D, Li S, Seneviratne S I. 2020. Soil moisture dominates dryness stress on ecosystem production globally. Nat Commun, 11: 4892

    Article  Google Scholar 

  • Liu Y, Li Z, Chen Y. 2021. Continuous warming shift greening towards browning in the Southeast and Northwest High Mountain Asia. Sci Rep, 11: 17920

    Article  Google Scholar 

  • Lu H, Qin Z, Lin S, Chen X, Chen B, He B, Wei J, Yuan W. 2022. Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency. Nat Commun, 13: 1653

    Article  Google Scholar 

  • Novick K A, Ficklin D L, Stoy P C, Williams C A, Bohrer G, Oishi A C, Papuga S A, Blanken P D, Noormets A, Sulman B N, Scott R L, Wang L, Phillips R P. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat Clim Change, 6: 1023–1027

    Article  Google Scholar 

  • Piao S, Wang X, Park T, Chen C, Lian X, He Y, Bjerke J W, Chen A, Ciais P, Tømmervik H, Nemani R R, Myneni R B. 2020. Characteristics, drivers and feedbacks of global greening. Nat Rev Earth Environ, 1: 14–27

    Article  Google Scholar 

  • Qiao L, Zuo Z, Xiao D. 2022. Evaluation of soil moisture in CMIP6 simulations. J Clim, 35: 779–800

    Article  Google Scholar 

  • Shi N. 2009. Meteorological Statistics and Forecasting (in Chinese). Beijing: China Meteorological Press

    Google Scholar 

  • Song Y, Jiao W, Wang J, Wang L. 2022. Increased global vegetation productivity despite rising atmospheric dryness over the last two decades. Earths Future, 10: 16

    Article  Google Scholar 

  • Stocker T F, Qin D, Plattner G K, Tignor M M B, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M. 2014. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Toms J D, Lesperance M L. 2003. Piecewise regression: A tool for identifying ecological thresholds. Ecology, 84: 2034–2041

    Article  Google Scholar 

  • Wang J, Tong J L, Xiao Y Q, Wu X Y, Zhang W Y. 2018. Interdecadal variation characteristics of summer sensible heat flux in typical arid and semi-arid areas of East Asia (in Chinese). Arid Meteor, 36: 203–211

    Google Scholar 

  • Wei F Y. 2007. Modern Climate Statistical Diagnosis and Prediction Techniques (in Chinese). 2nd ed. Beijing: China Meteorological Press

    Google Scholar 

  • Williams A P, Allen C D, Macalady A K, Griffin D, Woodhouse C A, Meko D M, Swetnam T W, Rauscher S A, Seager R, Grissino-Mayer H D, Dean J S, Cook E R, Gangodagamage C, Cai M, McDowell N G. 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change, 3: 292–297

    Article  Google Scholar 

  • Williams A P, Seager R, Macalady A K, Berkelhammer M, Crimmins M A, Swetnam T W, Trugman A T, Buenning N, Noone D, McDowell N G, Hryniw N, Mora C I, Rahn T. 2015. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int J Wildland Fire, 24: 14–26

    Article  Google Scholar 

  • Xiao D, Li J P. 2007. Main decadal abrupt changes and decadal modes in global sea surface temperature field (in Chinese). Chin J Atmos Sci, 31: 839–854

    Google Scholar 

  • Yuan R R, Huang X L, Hao L. 2021. Spatiotemporal variation of vapor pressure deficit and impact factors in China in the past 40 years (in Chinese). Climatic Environ Res, 26: 413–424

    Google Scholar 

  • Yuan W, Zheng Y, Piao S, Ciais P, Lombardozzi D, Wang Y, Ryu Y, Chen G, Dong W, Hu Z, Jain A K, Jiang C, Kato E, Li S, Lienert S, Liu S, Nabel J E M S, Qin Z, Quine T, Sitch S, Smith W K, Wang F, Wu C, Xiao Z, Yang S. 2019. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci Adv, 5: eaax1396

    Article  Google Scholar 

  • Zeng Z, Piao S, Li L Z X, Zhou L, Ciais P, Wang T, Li Y, Lian X, Wood E F, Friedlingstein P, Mao J, Estes L D, Myneni R B, Peng S, Shi X, Seneviratne S I, Wang Y. 2017. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat Clim Change, 7: 432–436

    Article  Google Scholar 

  • Zhou S, Williams A P, Berg A M, Cook B I, Zhang Y, Hagemann S, Lorenz R, Seneviratne S I, Gentine P. 2019a. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc Natl Acad Sci USA, 116: 18848–18853

    Article  Google Scholar 

  • Zhou S, Williams A P, Lintner B R, Berg A M, Zhang Y, Keenan T F, Cook B I, Hagemann S, Seneviratne S I, Gentine P. 2021. Soil moisture-atmosphere feedbacks mitigate declining water availability in drylands. Nat Clim Chang, 11: 38–44

    Article  Google Scholar 

  • Zhou S, Zhang Y, Park Williams A, Gentine P. 2019b. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci Adv, 5: eaau5740

    Article  Google Scholar 

  • Zhu Z, Piao S, Myneni R B, Huang M, Zeng Z, Canadell J G, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C, Cheng L, Kato E, Koven C, Li Y, Lian X, Liu Y, Liu R, Mao J, Pan Y, Peng S, Peñuelas J, Poulter B, Pugh T A M, Stocker B D, Viovy N, Wang X, Wang Y, Xiao Z, Yang H, Zaehle S, Zeng N. 2016. Greening of the Earth and its drivers. Nat Clim Change, 6: 791–795

    Article  Google Scholar 

  • Zuo Z, Xiao D, He Q. 2021. Role of the warming trend in global land surface air temperature variations. Sci China Earth Sci, 64: 866–871

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFF0801703) and the National Natural Science Foundation of China (Grant Nos. 42175053 & 41822503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyan Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Zuo, Z., Lin, Z. et al. The decadal abrupt change in the global land vapor pressure deficit. Sci. China Earth Sci. 66, 1521–1534 (2023). https://doi.org/10.1007/s11430-022-1117-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1117-x

Keywords

Navigation