Skip to main content
Log in

Deep learning-based multi-source precipitation merging for the Tibetan Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Due to its complex and diverse terrain, precipitation gauges in the Tibetan Plateau (TP) are sparse, making it difficult to obtain reliable precipitation data for environmental studies. Data merging is a method that can integrate precipitation data from multiple sources to generate high-precision precipitation data. However, the more commonly used methods, such as regression and machine learning, do not usually consider the local correlation of precipitation, so that the spatial pattern of precipitation cannot be reproduced, while deep learning methods do incorporate spatial correlation. To explore the ability of using deep learning methods in merging precipitation data for the TP, this study compared three methods: a deep learning method—a convolutional neural network (CNN) algorithm, a machine learning method—an artificial neural network (ANN) algorithm, and a statistical method based on Extended Triple Collocation (ETC) in merging precipitation from multiple sources (gauged, grid, satellite and dynamic downscaling) over the TP, as well as their performance for hydrological simulations. Dynamic downscaling data driven by global reanalysis data centered on the TP were introduced in the merging process to better reflect the spatial variability of precipitation. The results show that: (1) in terms of the meteorological metrics, the merged data perform better than the gauge interpolation data. By using data merging, the error between the raw multi-source and gauged precipitation can be reduced, and the precipitation detection capability can be greatly improved; (2) The merged precipitation data also perform well in the hydrological evaluation. The Xin’anjiang (XAJ) model parameter calibration experiments at the source of the Yangtze River (SYR) and the source of the Yellow River (SHR) were repeated 300 times to remove uncertainty in the model parameter results. The median Kling-Gupta Efficiency Coefficients (KGE) of simulated runoff from the merged data of the ANN, CNN and ETC methods for the SYR and the SHR are 0.859, 0.864, 0.838 and 0.835, 0.835, 0.789, respectively. Except for the ETC merging data at the SHR, the performance of other merged data was improved compared to the simulation results of the gauged precipitation (KGE=0.807 at the SYR, KGE=0.828 at the SHR); and (3) In contrast to the machine learning ANN method and the statistical ETC method, the deep learning method, CNN, consistently showed better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck H E, Westra S, Tan J, Pappenberger F, Huffman G J, McVicar T R, Gründemann G J, Vergopolan N, Fowler H J, Lewis E, Verbist K, Wood E F. 2020. PPDIST, global 0.1° daily and 3-hourly precipitation probability distribution climatologies for 1979–2018. Sci Data, 7: 302

    Article  Google Scholar 

  • Bitew M M, Gebremichael M. 2011a. Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian Highlands. Hydrol Earth Syst Sci, 15: 1147–1155

    Article  Google Scholar 

  • Bitew M M, Gebremichael M. 2011b. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour Res, 47: W06526

    Article  Google Scholar 

  • Bukovsky M S, Karoly D J. 2007. A brief evaluation of precipitation from the north american regional reanalysis. J Hydrometeorol, 8: 837–846

    Article  Google Scholar 

  • Chen J. 2013. Water Cycle Mechanism in the Source Region of Yangtze River (in Chinese). J Yangtze River Sci Res Inst, 30: 1–5

    Google Scholar 

  • Chen F, Li X. 2016. Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China. Remote Sens, 8: 472

    Article  Google Scholar 

  • Chen J, Chen H, Guo S. 2018. Multi-Site precipitation downscaling using a stochastic weather generator. Clim Dyn, 50: 1975–1992

    Article  Google Scholar 

  • Chen Y, Sharma S, Zhou X, Yang K, Li X, Niu X, Hu X, Khadka N. 2021. spatial performance of multiple reanalysis precipitation datasets on the southern slope of Central Himalaya. Atmos Res, 250: 105365

    Article  Google Scholar 

  • Duan Q, Sorooshian S, Gupta V. 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res, 28: 1015–1031

    Article  Google Scholar 

  • Fang K, Shen C, Kifer D, Yang X. 2017. Prolongation of SMAP to spatiotemporally seamless coverage of continental U.S. using a deep learning neural network. Geophys Res Lett, 44: 11,030–11,039

    Article  Google Scholar 

  • Fu Y, Liu Q, Zi Y, Feng S, Li Y, Liu G. 2008. Summer precipitation and latent heating over the Tibetan Plateau based on TRMM measurements (in Chinese). Plateau Mountain Meteorol Res, 28: 8–18

    Google Scholar 

  • Gao Y C, Liu M F. 2013. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol Earth Syst Sci, 17: 837–849

    Article  Google Scholar 

  • Gao Y, Xu J, Chen D. 2015. Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979–2011. J Clim, 28: 2823–2841

    Article  Google Scholar 

  • Gao Y, Chen F, Jiang Y. 2020. Evaluation of a convection-permitting modeling of precipitation over the Tibetan Plateau and its influences on the simulation of snow-cover fraction. J Hydrometeorol, 21: 1531–1548

    Article  Google Scholar 

  • Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J, Chen T. 2018. Recent advances in convolutional neural networks. Pattern Recognition, 77: 354–377

    Article  Google Scholar 

  • Hong Z, Han Z, Li X, Long D, Tang G, Wang J. 2021. Generation of an improved precipitation data set from multisource information over the Tibetan Plateau. J Hydrometeorol, 22: 1275–1295

    Google Scholar 

  • Hou A Y, Kakar R K, Neeck S, Azarbarzin A A, Kummerow C D, Kojima M, Oki R, Nakamura K, Iguchi T. 2014. The global precipitation measurement mission. Bull Amer Meteorol Soc, 95: 701–722

    Article  Google Scholar 

  • Hou Y K, Chen H, Xu C Y, Chen J, Guo S L. 2017. Coupling a markov chain and support vector machine for at-site downscaling of daily precipitation. J Hydrometeorol, 18: 2385–2406

    Article  Google Scholar 

  • Immerzeel W W, van Beek L P H, Bierkens M F P. 2010. Climate change will affect the Asian water towers. Science, 328: 1382–1385

    Article  Google Scholar 

  • Jiang L, Bauer-Gottwein P. 2019. How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for 300 catchments across mainland China. J Hydrol, 572: 486–500

    Article  Google Scholar 

  • Jiang T, Chen Y D, Xu C, Chen X, Chen X, Singh V P. 2007. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. J Hydrol, 336: 316–333

    Article  Google Scholar 

  • Jiang Y, Yang K, Shao C, Zhou X, Zhao L, Chen Y, Wu H. 2021. A downscaling approach for constructing high-resolution precipitation dataset over the Tibetan Plateau from ERA5 reanalysis. Atmos Res, 256: 105574

    Article  Google Scholar 

  • Koster R D, Liu Q, Reichle R H, Huffman G J. 2021. Improved estimates of pentad precipitation through the merging of independent precipitation data sets. Water Resources Res, 57: e2021W

    Article  Google Scholar 

  • Li Q, Zhang W, Yi L, Liu J, Chen H. 2018. Accuracy evaluation and comparison of GPM and TRMM precipitation product over Mainland China (in Chinese). Adv Water Sci, 29: 303–313

    Google Scholar 

  • Li D, Yang K, Tang W, Li X, Zhou X, Guo D. 2020. Characterizing precipitation in high altitudes of the western Tibetan Plateau with a focus on major glacier areas. Int J Climatol, 40: 5114–5127

    Article  Google Scholar 

  • Li K, Tian F, Khan M Y A, Xu R, He Z, Yang L, Lu H, Ma Y. 2021. A high-accuracy rainfall dataset by merging multiple satellites and dense gauges over the southern Tibetan Plateau for 2014–2019 warm seasons. Earth Syst Sci Data, 13: 5455–5467

    Article  Google Scholar 

  • Li W, Chen J, Li L, Orsolini Y J, Xiang Y, Senan R, de Rosnay P. 2022. Impacts of snow assimilation on seasonal snow and meteorological forecasts for the Tibetan Plateau. The Cryosphere Discuss. 1–31

  • Lin Q, Chen J, Chen D, Wang X, Li W, Scherer D. 2021. Impacts of bias-orrected ERA5 initial snow depth on dynamical downscaling simulations for the Tibetan Plateau. J Geophys Res-Atmos, 126: e2021JD035625

    Article  Google Scholar 

  • Liu X, Yin Z Y. 2001. Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the north Atlantic oscillation. J Clim, 14: 2896–2909

    Article  Google Scholar 

  • Liu Z, Liu Y, Wang S, Yang X, Wang L, Baig M H A, Chi W, Wang Z. 2018. Evaluation of spatial and temporal performances of ERA-interim precipitation and temperature in mainland China. J Clim, 31: 4347–4365

    Article  Google Scholar 

  • Lu D, Yong B. 2018. Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau. Remote Sens, 10: 2022

    Article  Google Scholar 

  • Lundquist J, Hughes M, Gutmann E, Kapnick S. 2019. Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull Am Meteorol Soc, 100: 2473–2490

    Article  Google Scholar 

  • Ma Y, Hong Y, Chen Y, Yang Y, Tang G, Yao Y, Long D, Li C, Han Z, Liu R. 2018. Performance of optimally merged multisatellite precipitation products using the dynamic Bayesian model averaging scheme over the Tibetan Plateau. J Geophys Res-Atmos, 123: 814–834

    Article  Google Scholar 

  • Ma Y, Sun X, Chen H, Hong Y, Zhang Y. 2021. A two-stage blending approach for merging multiple satellite precipitation estimates and rain gauge observations: An experiment in the northeastern Tibetan Plateau. Hydrol Earth Syst Sci, 25: 359–374

    Article  Google Scholar 

  • McColl K A, Vogelzang J, Konings A G, Entekhabi D, Piles M, Stoffelen A. 2014. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophys Res Lett, 41: 6229–6236

    Article  Google Scholar 

  • Min X Y, Yang C G, Li Y, Cheng G. 2020. Accuracy analysis of flood forecasting based on the fusion data of satellite and gauge rainfalls in humid region (in Chinese). Water Resour Power, 38: 1–5

    Google Scholar 

  • Muñoz-Díaz D, Rodrigo F S. 2006. Seasonal Rainfall Variations in Spain (1912–2000) and their Links to Atmospheric Circulation. Atmos Res, 81: 94–110

    Article  Google Scholar 

  • Nan S, Zhao P, Yang S, Chen J. 2009. Springtime tropospheric temperature over the Tibetan Plateau and evolutions of the tropical Pacific SST. J Geophys Res, 114: D10104

    Article  Google Scholar 

  • Ou T, Chen D, Chen X, Lin C, Yang K, Lai H W, Zhang F. 2020. Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization. Clim Dyn, 54: 3525–3539

    Article  Google Scholar 

  • Pan B, Hsu K, AghaKouchak A, Sorooshian S. 2019. Improving precipitation estimation using convolutional neural network. Water Resources Res, 55: 2301–2321

    Article  Google Scholar 

  • Qi W, Chen J, Li L, Xu C Y, Li J, Xiang Y, Zhang S. 2022. Regionalization of catchment hydrological model parameters for global water resources simulations. Hydrol Res, 53: 441–466

    Article  Google Scholar 

  • Qiu J. 2008. China: The Third Pole. Nature, 454: 393–396

    Article  Google Scholar 

  • Shen C, Laloy E, Elshorbagy A, Albert A, Bales J, Chang F J, Ganguly S, Hsu K L, Kifer D, Fang Z, Fang K, Li D, Li X, Tsai W P. 2018. HESS opinions: Incubating deep-learning-powered hydrologic science advances as a community. Hydrol Earth Syst Sci, 22: 5639–5656

    Article  Google Scholar 

  • Sui Y, Jiang D, Tian Z. 2013. Latest update of the climatology and changes in the seasonal distribution of precipitation over China. Theor Appl Climatol, 113: 599–610

    Article  Google Scholar 

  • Sun H, Su F, He Z, Ou T, Chen D, Li Z, Li Y. 2021. Hydrological evaluation of high-resolution precipitation estimates from the WRF model in the Third Pole River Basins. J Hydrometeorol, 22: 2055–2071

    Google Scholar 

  • Tang G, Ma Y, Long D, Zhong L, Hong Y. 2016. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over mainland China at multiple spatiotemporal scales. J Hydrol, 533: 152–167

    Article  Google Scholar 

  • Tang G, Long D, Hong Y, Gao J, Wan W. 2018. Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau Using spaceborne precipitation radars. Remote Sens Environ, 208: 82–96

    Article  Google Scholar 

  • Tian B, Chen H, Wang J, Xu C Y. 2021. Accuracy assessment and error cause analysis of GPM (V06) in Xiangjiang River catchment. Hydrol Res, 52: 1048–1065

    Article  Google Scholar 

  • Tong K, Su F, Yang D, Hao Z. 2014. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J Hydrol, 519: 423–437

    Article  Google Scholar 

  • Valéry A, Andréassian V, Perrin C. 2014. ‘As simple as possible but not simpler’: What is useful in a temperature-based snow-accounting routine? Part 2—Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments. J Hydrol, 517: 1176–1187

    Article  Google Scholar 

  • Venkatesh K, Maheswaran R, Devacharan J. 2022. Framework for developing IDF curves using satellite precipitation: A Case Study Using GPM-IMERG V6 Data. Earth Sci Inform, 15: 671–687

    Article  Google Scholar 

  • Wang X, Pang G, Yang M. 2018. Precipitation over the Tibetan Plateau during recent decades: A review based on observations and simulations. Int J Climatol, 38: 1116–1131

    Article  Google Scholar 

  • Wang H M, Chen J, Xu C Y, Zhang J, Chen H. 2020. A framework to quantify the uncertainty contribution of GCMs over multiple sources in hydrological impacts of climate change. Earths Future, 8: e2020EF001602

    Article  Google Scholar 

  • Wang J, Cao J, Zhao S, Qi Q. 2022. S-wave velocity inversion and prediction using a deep hybrid neural network. Sci China Earth Sci, 65: 724–741

    Article  Google Scholar 

  • Whelan E, Gleeson E, Hanley J. 2018. An evaluation of MÉRA, a high-resolution mesoscale regional reanalysis. J Appl Meteor Climatol, 57: 2179–2196

    Article  Google Scholar 

  • Wu G, Liu Y, He B, Bao Q, Duan A, Jin F F. 2012. Thermal controls on the Asian Summer Monsoon. Sci Rep, 2: 404

    Article  Google Scholar 

  • Wu J, Gao X J. 2013. A Gridded daily observation dataset over China region and comparison with the other datasets (in Chinese). Chin J Geophys, 56: 1151–1169

    Google Scholar 

  • Xiong L H, Guo S L. 1998. Three Layers Coupled Watershed Hdrological Model (I) Model Structure and Equation (in Chinese). J Wuhan Univ Hydr Elec Eng, 31: 28–31

    Google Scholar 

  • Xiong L H, Liu C K, Chen S L, Zha X, Ma Q. 2021. Review of postprocessing research for remote-sensing precipitation products (in Chinese). Adv Water Sci, 32: 627–637

    Google Scholar 

  • Xu X, Lu C, Shi X, Gao S. 2008. World water tower: An atmospheric perspective. Geophys Res Lett, 35: L20815

    Article  Google Scholar 

  • Xu R, Tian F, Yang L, Hu H, Lu H, Hou A. 2017. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over Southern Tibetan Plateau based on a high-density rain gauge network. J Geophys Res-Atmos, 122: 910–924

    Article  Google Scholar 

  • Xu Z, Han Y, Yang Z. 2019. Dynamical downscaling of regional climate: A review of methods and limitations. Sci China Earth Sci, 62: 365–375

    Article  Google Scholar 

  • Xu W, Chen J, Su T, Kim J S, Gu L, Lee J H. 2022. Cascading model-based framework for the sustainability assessment of a multipurpose reservoir in a changing climate. J Water Resour Plann Manage, 148: 5021029

    Article  Google Scholar 

  • Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel D B, Joswiak D. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change, 2: 663–667

    Article  Google Scholar 

  • Yin Z Y, Zhang X, Liu X, Colella M, Chen X. 2008. An assessment of the biases of satellite rainfall estimates over the Tibetan Plateau and correction methods based on topographic analysis. J Hydrometeorol, 9: 301–326

    Article  Google Scholar 

  • Yu H, Liang Z, Yan Y. 2020. Review on multi-source and multi-modal data fusion and integration (in Chinese). Inform Stud Theory Appl, 43: 169–178

    Google Scholar 

  • Zhao R J, Zhuang Y L, Fang L R, Liu X R, Zhang Q S. 1980. The Xinanjiang Model. In: Hydrological Forecasting, IAHS Publication No. 129. Wallingford: IAHS Press. 351–356

    Google Scholar 

  • Zhao R J, Wang P L. 1988. Analysis of XAJ model parameters (in Chinese). J China Hydrol, (6): 2–9

    Google Scholar 

  • Zhao R J. 1992. The Xinanjiang model applied in China. J Hydrol, 135: 371–381

    Article  Google Scholar 

  • Zhang C F, Liu C S, Wang G D, Jin J, Guan X. 2020. Attribution of Runoff Variation for the Yellow River Source Region Based on the Budyko Hypothesis (in Chinese). China Rural Water Hydropower, (9): 90–94

    Google Scholar 

  • Zhang L, Li X, Zheng D, Zhang K, Ma Q, Zhao Y, Ge Y. 2021. Merging multiple satellite-based precipitation products and gauge observations using a novel double machine learning approach. J Hydrol, 594: 125969

    Article  Google Scholar 

  • Zhou X J, Zhao P, Chen J M, Chen L X, Li W L. 2009. Impacts of thermodynamic processes over the Tibetan Plateau on the northern hemispheric climate. Sci China Ser D-Earth Sci, 52: 1679–1693

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Deliang CHEN and Dr. Tinghai OU from the Regional Climate Group of the University of Gothenburg, Sweden, for providing the TPReanalysis dynamic downscaling dataset. Also, we thank Professor Xuejie GAO from the Laboratory for Climate Studies, China Meteorological Administration, for providing the CN05.1 gridded daily meteorological forcing dataset. Especially, we thank the responsible editor and four anonymous reviewers for constructive comments that helped improve the manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 52079093) and the National Natural Science Foundation of Hubei Province of China (Grant No. 2020CFA100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, T., Chen, J., Ding, Z. et al. Deep learning-based multi-source precipitation merging for the Tibetan Plateau. Sci. China Earth Sci. 66, 852–870 (2023). https://doi.org/10.1007/s11430-022-1050-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1050-2

Keywords

Navigation