Skip to main content
Log in

Most root-derived carbon inputs do not contribute to long-term global soil carbon storage

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Plant root-derived carbon (C) inputs (Iroot) are the primary source of C in mineral bulk soil. However, a fraction of Iroot may lose quickly (Iloss, e.g., via rhizosphere microbial respiration, leaching and fauna feeding) without contributing to long-term bulk soil C storage, yet this loss has never been quantified, particularly on a global scale. In this study we integrated three observational global data sets including soil radiocarbon content, allocation of photosynthetically assimilated C, and root biomass distribution in 2,034 soil profiles to quantify Iroot and its contribution to the bulk soil C pool. We show that global average Iroot in the 0–200 cm soil profile is 3.5 Mg ha−1 yr−1, ∼80% of which (i.e., Iloss) is lost rather than contributing to long-term bulk soil C storage. Iroot decreases exponentially with soil depth, and the top 20 cm soil contains >60% of total Iroot. Actual C input contributing to long-term bulk soil storage (i.e., IrootIloss) shows a similar depth distribution to Iroot. We also map Iloss and its depth distribution across the globe. Our results demonstrate the global significance of direct C losses which limit the contribution of Iroot to bulk soil C storage; and provide spatially explicit data to facilitate reliable soil C predictions via separating direct C losses from total root-derived C inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balesdent J, Basile-Doelsch I, Chadoeuf J, Cornu S, Derrien D, Fekiacova Z, Hatté C. 2018. Atmosphere-soil carbon transfer as a function of soil depth. Nature, 559: 599–602

    Article  Google Scholar 

  • Batjes N H. 2016. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma, 269: 61–68

    Article  Google Scholar 

  • Braakhekke M C, Beer C, Schrumpf M, Ekici A, Ahrens B, Hoosbeek M R, Kruijt B, Kabat P, Reichstein M. 2014. The use of radiocarbon to constrain current and future soil organic matter turnover and transport in a temperate forest. J Geophys Res-Biogeosci, 119: 372–391

    Article  Google Scholar 

  • Bradford M A, Wieder W R, Bonan G B, Fierer N, Raymond P A, Crowther T W. 2016. Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Change, 6: 751–758

    Article  Google Scholar 

  • Canadell J, Jackson R B, Ehleringer J B, Mooney H A, Sala O E, Schulze E D. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia, 108: 583–595

    Article  Google Scholar 

  • Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, Mu M, Saatchi S, Santoro M, Thurner M, Weber U, Ahrens B, Beer C, Cescatti A, Randerson J T, Reichstein M. 2014. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 514: 213–217

    Article  Google Scholar 

  • Channan S, Collins K, Emanuel W. 2014. Global mosaics of the standard MODIS land cover type data. University of Maryland and the Pacific Northwest National Laboratory, College Park, Maryland, USA 30

    Google Scholar 

  • Cherkinsky A E, Brovkin V A. 1993. Dynamics of radiocarbon in soils. Radiocarbon, 35: 363–367

    Article  Google Scholar 

  • Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J. 2015. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci Model Dev, 8: 1991–2007

    Article  Google Scholar 

  • Coulston J W, Blinn C E, Thomas V A, Wynne R H. 2016. Approximating prediction uncertainty for random forest regression models. Photogram Engng Rem Sens, 82: 189–197

    Article  Google Scholar 

  • Crowther T W, Todd-Brown K E O, Rowe C W, Wieder W R, Carey J C, Machmuller M B, Snoek B L, Fang S, Zhou G, Allison S D, Blair J M, Bridgham S D, Burton A J, Carrillo Y, Reich P B, Clark J S, Classen A T, Dijkstra F A, Elberling B, Emmett B A, Estiarte M, Frey S D, Guo J, Harte J, Jiang L, Johnson B R, Kröel-Dulay G, Larsen K S, Laudon H, Lavallee J M, Luo Y, Lupascu M, Ma L N, Marhan S, Michelsen A, Mohan J, Niu S, Pendall E, Peñuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds L L, Schmidt I K, Sistla S, Sokol N W, Templer P H, Treseder K K, Welker J M, Bradford M A. 2016. Quantifying global soil carbon losses in response to warming. Nature, 540: 104–108

    Article  Google Scholar 

  • Davidson E A, Savage K, Bolstad P, Clark D A, Curtis P S, Ellsworth D S, Hanson P J, Law B E, Luo Y, Pregitzer K S, Randolph J C, Zak D. 2002. Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agric For Meteorol, 113: 39–51

    Article  Google Scholar 

  • Drigo B, Pijl A S, Duyts H, Kielak A M, Gamper H A, Houtekamer M J, Boschker H T S, Bodelier P L E, Whiteley A S, Veen J A, Kowalchuk G A. 2010. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci USA, 107: 10938–10942

    Article  Google Scholar 

  • Fan N, Koirala S, Reichstein M, Thurner M, Avitabile V, Santoro M, Ahrens B, Weber U, Carvalhais N. 2020. Apparent ecosystem carbon turnover time: Uncertainties and robust features. Earth Syst Sci Data, 12: 2517–2536

    Article  Google Scholar 

  • Fick S E, Hijmans R J. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Inter J Climatol, 37: 4302–4315

    Article  Google Scholar 

  • Finzi A C, Abramoff R Z, Spiller K S, Brzostek E R, Darby B A, Kramer M A, Phillips R P. 2015. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Change Biol, 21: 2082–2094

    Article  Google Scholar 

  • Garnier E. 1991. Resource capture, biomass allocation and growth in herbaceous plants. Trends Ecol Evol, 6: 126–131

    Article  Google Scholar 

  • Gelman A, Hill J. 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Haichar F Z, Santaella C, Heulin T, Achouak W. 2014. Root exudates mediated interactions belowground. Soil Biol Biochem, 77: 69–80

    Article  Google Scholar 

  • He Y, Trumbore S E, Torn M S, Harden J W, Vaughn L J S, Allison S D, Randerson J T. 2016. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science, 353: 1419–1424

    Article  Google Scholar 

  • Hicks Pries C E, Castanha C, Porras R C, Torn M S. 2017. The whole-soil carbon flux in response to warming. Science, 355: 1420–1423

    Article  Google Scholar 

  • Hua Q, Barbetti M, Rakowski A Z. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon, 55: 2059–2072

    Article  Google Scholar 

  • Jackson R B, Lajtha K, Crow S E, Hugelius G, Kramer M G, Piñeiro G. 2017. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annu Rev Ecol Evol Syst, 48: 419–445

    Article  Google Scholar 

  • Jiang M, Medlyn B E, Drake J E, Duursma R A, Anderson I C, Barton C V M, Boer M M, Carrillo Y, Castañeda-Gómez L, Collins L, Crous K Y, De Kauwe M G, dos Santos B M, Emmerson K M, Facey S L, Gherlenda A N, Gimeno T E, Hasegawa S, Johnson S N, Kännaste A, Macdonald C A, Mahmud K, Moore B D, Nazaries L, Neilson E H J, Nielsen U N, Niinemets Ü, Noh N J, Ochoa-Hueso R, Pathare V S, Pendall E, Pihlblad J, Piñeiro J, Powell J R, Power S A, Reich P B, Renchon A A, Riegler M, Rinnan R, Rymer P D, Salomón R L, Singh B K, Smith B, Tjoelker M G, Walker J K M, Wujeska-Klause A, Yang J, Zaehle S, Ellsworth D S. 2020. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature, 580: 227–231

    Article  Google Scholar 

  • Jobbágy E G, Jackson R B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl, 10: 423

    Article  Google Scholar 

  • Kaiser H F. 1960. The application of electronic computers to factor analysis. Educational Psychol Measurement, 20: 141–151

    Article  Google Scholar 

  • Kaiser K, Kalbitz K. 2012. Cycling downwards-dissolved organic matter in soils. Soil Biol Biochem, 52: 29–32

    Article  Google Scholar 

  • Kuzyakov Y, Horwath W R, Dorodnikov M, Blagodatskaya E. 2019. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biol Biochem, 128: 66–78

    Article  Google Scholar 

  • Kuzyakov Y, Razavi B S. 2019. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol Biochem, 135: 343–360

    Article  Google Scholar 

  • Lange M, Eisenhauer N, Sierra C A, Bessler H, Engels C, Griffiths R I, Mellado-Vázquez P G, Malik A A, Roy J, Scheu S, Steinbeiss S, Thomson B C, Trumbore S E, Gleixner G. 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun, 6: 6707

    Article  Google Scholar 

  • Lawrence C R, Beem-Miller J, Hoyt A M, Monroe G, Sierra C A, Stoner S, Heckman K, Blankinship J C, Crow S E, McNicol G, Trumbore S, Levine P A, Vindušková O, Todd-Brown K, Rasmussen C, Hicks Pries C E, Schädel C, McFarlane K, Doetterl S, Hatté C, He Y, Treat C, Harden J W, Torn M S, Estop-Aragonés C, Asefaw Berhe A, Keiluweit M, Della Rosa Kuhnen Á, Marin-Spiotta E, Plante A F, Thompson A, Shi Z, Schimel J P, Vaughn L J S, von Fromm S F, Wagai R. 2020. An open-source database for the synthesis of soil radiocarbon data: International soil radiocarbon database (ISRaD) version 1.0. Earth Syst Sci Data, 12: 61–76

    Article  Google Scholar 

  • Ledo A, Paul K I, Burslem D F R P, Ewel J J, Barton C, Battaglia M, Brooksbank K, Carter J, Eid T H, England J R, Fitzgerald A, Jonson J, Mencuccini M, Montagu K D, Montero G, Mugasha W A, Pinkard E, Roxburgh S, Ryan C M, Ruiz-Peinado R, Sochacki S, Specht A, Wildy D, Wirth C, Zerihun A, Chave J. 2018. Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytol, 217: 8–11

    Article  Google Scholar 

  • Liang C, Amelung W, Lehmann J, Kästner M. 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Change Biol, 25: 3578–3590

    Article  Google Scholar 

  • Luo Y, Ahlström A, Allison S D, Batjes N H, Brovkin V, Carvalhais N, Chappell A, Ciais P, Davidson E A, Finzi A, Georgiou K, Guenet B, Hararuk O, Harden J W, He Y, Hopkins F, Jiang L, Koven C, Jackson R B, Jones C D, Lara M J, Liang J, McGuire A D, Parton W, Peng C, Randerson J T, Salazar A, Sierra C A, Smith M J, Tian H, Todd-Brown K E O, Torn M, Groenigen K J, Wang Y P, West T O, Wei Y, Wieder W R, Xia J, Xu X, Xu X, Zhou T. 2016. Toward more realistic projections of soil carbon dynamics by Earth system models. Glob Biogeochem Cycle, 30: 40–56

    Article  Google Scholar 

  • Luo Z, Luo Y, Wang G, Xia J, Peng C. 2020. Warming-induced global soil carbon loss attenuated by downward carbon movement. Glob Change Biol, 26: 7242–7254

    Article  Google Scholar 

  • Luo Z, Wang G, Wang E. 2019. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nat Commun, 10: 3688

    Article  Google Scholar 

  • Luo Z, Feng W, Luo Y, Baldock J, Wang E. 2017. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob Change Biol, 23: 4430–4439

    Article  Google Scholar 

  • Malhi Y, Girardin C A J, Goldsmith G R, Doughty C E, Salinas N, Metcalfe D B, Huaraca Huasco W, Silva-Espejo J E, Aguilla-Pasquell J, Farfán Amézquita F, Aragão L E O C, Guerrieri R, Ishida F Y, Bahar N H A, Farfan-Rios W, Phillips O L, Meir P, Silman M. 2017. The variation of productivity and its allocation along a tropical elevation gradient: A whole carbon budget perspective. New Phytol, 214: 1019–1032

    Article  Google Scholar 

  • Massalha H, Korenblum E, Tholl D, Aharoni A. 2017. Small molecules below-ground: The role of specialized metabolites in the rhizosphere. Plant J, 90: 788–807

    Article  Google Scholar 

  • McCarthy H R, Oren R, Johnsen K H, Gallet-Budynek A, Pritchard S G, Cook C W, LaDeau S L, Jackson R B, Finzi A C. 2010. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: Interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol, 185: 514–528

    Article  Google Scholar 

  • Negrón-Juárez R I, Koven C D, Riley W J, Knox R G, Chambers J Q. 2015. Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environ Res Lett, 10: 064017

    Article  Google Scholar 

  • Olson D M, Dinerstein E, Wikramanayake E D, Burgess N D, Powell G V N, Underwood E C, D’amico J A, Itoua I, Strand H E, Morrison J C, Loucks C J, Allnutt T F, Ricketts T H, Kura Y, Lamoreux J F, Wettengel W W, Hedao P, Kassem K R. 2001. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience, 51: 933–938

    Article  Google Scholar 

  • Osler G H R, Sommerkorn M. 2007. Toward a complete soil C and N cycle: Incorporating the soil fauna. Ecology, 88: 1611–1621

    Article  Google Scholar 

  • R Development Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Raich J W, Nadelhoffer K J. 1989. Belowground carbon allocation in forest ecosystems: Global trends. Ecology, 70: 1346–1354

    Article  Google Scholar 

  • Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, Andersson A J, Arndt S, Arnosti C, Borges A V, Dale A W, Gallego-Sala A, Goddéris Y, Goossens N, Hartmann J, Heinze C, Ilyina T, Joos F, LaRowe D E, Leifeld J, Meysman F J R, Munhoven G, Raymond P A, Spahni R, Suntharalingam P, Thullner M. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci, 6: 597–607

    Article  Google Scholar 

  • Schenk H J, Jackson R B. 2002. The global biogeography of roots. Ecol Monogr, 72: 311–328

    Article  Google Scholar 

  • Schimel J P, Schaeffer S M. 2012. Microbial control over carbon cycling in soil. Front Microbiol, 3: 11

    Article  Google Scholar 

  • Shi Z, Allison S D, He Y, Levine P A, Hoyt A M, Beem-Miller J, Zhu Q, Wieder W R, Trumbore S, Randerson J T. 2020. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat Geosci, 13: 555–559

    Article  Google Scholar 

  • Sokol N W, Bradford M A. 2019. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat Geosci, 12: 46–53

    Article  Google Scholar 

  • Terrer C, Jackson R B, Prentice I C, Keenan T F, Kaiser C, Vicca S, Fisher J B, Reich P B, Stocker B D, Hungate B A, Peñuelas J, McCallum I, Soudzilovskaia N A, Cernusak L A, Talhelm A F, Van Sundert K, Piao S, Newton P C D, Hovenden M J, Blumenthal D M, Liu Y Y, Müller C, Winter K, Field C B, Viechtbauer W, Van Lissa C J, Hoosbeek M R, Watanabe M, Koike T, Leshyk V O, Polley H W, Franklin O. 2019. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat Clim Chang, 9: 684–689

    Article  Google Scholar 

  • Todd-Brown K E O, Randerson J T, Post W M, Hoffman F M, Tarnocai C, Schuur E A G, Allison S D. 2013. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences, 10: 1717–1736

    Article  Google Scholar 

  • van den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle D A, de Goede R G M, Adams B J, Ahmad W, Andriuzzi W S, Bardgett R D, Bonkowski M, Campos-Herrera R, Cares J E, Caruso T, de Brito Caixeta L, Chen X, Costa S R, Creamer R, Mauro da Cunha Castro J, Dam M, Djigal D, Escuer M, Griffiths B S, Gutiérrez C, Hohberg K, Kalinkina D, Kardol P, Kergunteuil A, Korthals G, Krashevska V, Kudrin A A, Li Q, Liang W, Magilton M, Marais M, Martín J A R, Matveeva E, Mayad E H, Mulder C, Mullin P, Neilson R, Nguyen T A D, Nielsen U N, Okada H, Rius J E P, Pan K, Peneva V, Pellissier L, Carlos Pereira da Silva J, Pitteloud C, Powers T O, Powers K, Quist C W, Rasmann S, Moreno S S, Scheu S, Setälä H, Sushchuk A, Tiunov A V, Trap J, van der Putten W, Vestergård M, Villenave C, Waeyenberge L, Wall D H, Wilschut R, Wright D G, Yang J, Crowther T W. 2019. Soil nematode abundance and functional group composition at a global scale. Nature, 572: 194–198

    Article  Google Scholar 

  • Viscarra Rossel R A, Webster R, Bui E N, Baldock J A. 2014. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change. Glob Change Biol, 20: 2953–2970

    Article  Google Scholar 

  • Werth M, Kuzyakov Y. 2010. 13C fractionation at the root-microorganisms-soil interface: A review and outlook for partitioning studies. Soil Biol Biochem, 42: 1372–1384

    Article  Google Scholar 

  • Wieder W R, Cleveland C C, Smith W K, Todd-Brown K. 2015. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat Geosci, 8: 441–444

    Article  Google Scholar 

  • Wu D, Piao S, Zhu D, Wang X, Ciais P, Bastos A, Xu X, Xu W. 2020. Accelerated terrestrial ecosystem carbon turnover and its drivers. Glob Change Biol, 26: 5052–5062

    Article  Google Scholar 

  • Zhao M, Heinsch F A, Nemani R R, Running S W. 2005. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ, 95: 164–176

    Article  Google Scholar 

  • Zhao M, Running S W. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329: 940–943

    Article  Google Scholar 

Download references

Acknowledgements

Mr. Shuxun CHENG from Chongqing Three Gorges University is acknowledged for his contribution in producing Figure 8 of this study. This work was supported by the National Key Research and Development Program (Grant No. 2021YFE0114500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA26010103) and the Major Program for Basic Research Project of Yunnan Province (Grant No. 202101BC070002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongkui Luo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Xiao, L., Lin, Z. et al. Most root-derived carbon inputs do not contribute to long-term global soil carbon storage. Sci. China Earth Sci. 66, 1072–1086 (2023). https://doi.org/10.1007/s11430-022-1031-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1031-5

Keywords

Navigation