Skip to main content
Log in

The LGM refugia of deciduous oak and distribution development since the LGM in China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The distribution development of oak has significant effects on ecosystems and society. Long-term forest distribution studies can help to better understand the vegetation dynamics under climate change or human activities in the future. In this study, we integrated different methods (i.e., palaeoecology, phylogeography, and species distribution models) to investigate the likely locations of glacial refugia and the postglacial development of the main deciduous oak species (i.e., Quercus variabilis, Q. mongolica, Q. dentata, Q. aliena, Q. acutissima and Q. liaotungensis). The results indicated that mountains such as the Changbai, Qinling, and Dabie Mountains acted as the refugia in northern and central China during the Last Glacial Maximum (LGM). The present Quercus in northern China could be the result of local dispersal during the postglacial period rather than only that of long-distance migration from south to north. Climate was the main influencing factor for oak migration, while human activities did not show much influence on this widespread genus. The topography acted as a buffer and made the mountains to act as refugia under a deteriorated climate. Compared with other main tree genera (e.g., Pinus and Betula), the refugia locations and migration routes of deciduous oak species were different because of their physiological differences. The individual migration dynamics of these three genera need to be considered when modelling their dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken S N, Yeaman S, Holliday J A, Wang T, Curtis-McLane S. 2008. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evolary Appl, 1: 95–111

    Google Scholar 

  • Anderegg W R L, Kane J M, Anderegg L D L. 2013. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change, 3: 30–36

    Google Scholar 

  • Andrič M, Sabatier P, Rapuc W, Ogrinc N, Dolenec M, Arnaud F, von Grafenstein U, Šinuc A. 2020. 6600 years of human and climate impacts on lake-catchment and vegetation in the Julian Alps (Lake Bohinj, Slovenia). Quat Sci Rev, 227: 106043

    Google Scholar 

  • Bai W N, Liao W J, Zhang D Y. 2010. Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytol, 188: 892–901

    Google Scholar 

  • Bastin J F, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner C M, Crowther T W. 2019. The global tree restoration potential. Science, 365: 76–79

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. 2012. Impacts of climate change on the future of biodiversity. Ecol Lett, 15: 365–377

    Google Scholar 

  • Box E, Fujiwara K. 2015. Warm-temperate deciduous forests: Concept and global overview. In: Box E, Fujiwara K, eds. Warm-Temperate Deciduous Forests Around the Northern Hemisphere. Cham: Springer. 7–26

    Google Scholar 

  • Cao X, Herzschuh U, Ni J, Zhao Y, Böhmer T. 2015. Spatial and temporal distributions of major tree taxa in eastern continental Asia during the last 22,000 years. Holocene, 25: 79–91

    Google Scholar 

  • Cavender-Bares J. 2016. Diversity, distribution and ecosystem services of the North American Oaks. Inter Oaks, 27: 37–48

    Google Scholar 

  • Chen D, Zhang X, Kang H, Sun X, Yin S, Du H, Yamanaka N, Gapare W, Wu H X, Liu C. 2012. Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: Multiple glacial refugia and mainland-migrated island populations. PLoS ONE, 7: e47268

    Google Scholar 

  • Chen K, Abbott R J, Milne R I, Tian X M, Liu J. 2008. Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China. Mol Ecol, 17: 4276–4288

    Google Scholar 

  • Chen T Y, Lou A R. 2019. Phylogeography and paleodistribution models of a widespread birch (Betula platyphylla Suk.) across East Asia: Multiple refugia, multidirectional expansion, and heterogeneous genetic pattern. Ecol Evol, 9: 7792–7807

    Google Scholar 

  • Chen X. 2019. Dynamics of forest composition and growth in Alabama of USA under human activities and climate fluctuation. J Sustain Forry, 38: 54–67

    Google Scholar 

  • Corella J P, Stefanova V, El Anjoumi A, Rico E, Giralt S, Moreno A, Plata-Montero A, Valero-Garcés B L. 2013. A 2500-year multi-proxy reconstruction of climate change and human activities in northern Spain: The Lake Arreo record. Palaeogeogr Palaeoclimatol Palaeoecol, 386: 555–568

    Google Scholar 

  • Eaton D A R, Hipp A L, González-Rodríguez A, Cavender-Bares J. 2015. Historical introgression among the American live oaks and the comparative nature of tests for introgression. Evolution, 69: 2587–2601

    Google Scholar 

  • Fang J, Wang Z, Tang Z. 2011. Atlas of Woody Plants in China: Distribution and Climate. Beijing: Higher Education Press

    Google Scholar 

  • Fawcett T. 2006. An introduction to ROC analysis. Pattern Recognition Lett, 27: 861–874

    Google Scholar 

  • Feurdean A, Grindean R, Florescu G, Tanƫău I, Niedermeyer E M, Diaconu A C, Hutchinson S M, Nielsen A B, Sava T, Panait A, Braun M, Hickler T. 2021. The transformation of the forest steppe in the lower Danube Plain of southeastern Europe: 6000 years of vegetation and land use dynamics. Biogeosciences, 18: 1081–1103

    Google Scholar 

  • Feurdean A, Wohlfarth B, Björkman L, Tantau I, Bennike O, Willis K J, Farcas S, Robertsson A M. 2007. The influence of refugial population on Lateglacial and early Holocene vegetational changes in Romania. Rev Palaeobot Palynol, 145: 305–320

    Google Scholar 

  • Gajewski K, Kriesche B, Chaput M A, Kulik R, Schmidt V. 2019. Humanvegetation interactions during the Holocene in North America. Veget Hist Archaeobot, 28: 635–647

    Google Scholar 

  • Gavin D G, Fitzpatrick M C, Gugger P F, Heath K D, Rodríguez-Sánchez F, Dobrowski S Z, Hampe A, Hu F S, Ashcroft M B, Bartlein P J, Blois J L, Carstens B C, Davis E B, de Lafontaine G, Edwards M E, Fernandez M, Henne P D, Herring E M, Holden Z A, Kong W S, Liu J, Magri D, Matzke N J, McGlone M S, Saltré F, Stigall A L, Tsai Y H E, Williams J W. 2014. Climate refugia: Joint inference from fossil records, species distribution models and phylogeography. New Phytol, 204: 37–54

    Google Scholar 

  • Gent P R, Danabasoglu G, Donner L J, Holland M M, Hunke E C, Jayne S R, Lawrence D M, Neale R B, Rasch P J, Vertenstein M, Worley P H, Yang Z L, Zhang M. 2011. The community climate system model version 4. J Clim, 24: 4973–4991

    Google Scholar 

  • Guido M A, Molinari C, Moneta V, Branch N, Black S, Simmonds M, Stastney P, Montanari C. 2020. Climate and vegetation dynamics of the Northern Apennines (Italy) during the Late Pleistocene and Holocene. Quat Sci Rev, 231: 106206

    Google Scholar 

  • Han D, Gao C, Li Y, Liu H, Cong J, Yu X, Wang G. 2020. Potential in paleoclimate reconstruction of modern pollen assemblages from natural and human-induced vegetation along the Heilongjiang River basin, NE China. Sci Total Environ, 745: 141121

    Google Scholar 

  • Hanewinkel M, Cullmann D A, Schelhaas M J, Nabuurs G J, Zimmermann N E. 2013. Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change, 3: 203–207

    Google Scholar 

  • Hao Q, de Lafontaine G, Guo D, Gu H, Hu F S, Han Y, Song Z, Liu H. 2018. The critical role of local refugia in postglacial colonization of Chinese pine: Joint inferences from DNA analyses, pollen records, and species distribution modeling. Ecography, 41: 592–606

    Google Scholar 

  • Hao Q, Liu H, Liu X. 2016. Pollen-detected altitudinal migration of forests during the Holocene in the mountainous forest-steppe ecotone in northern China. Palaeogeogr Palaeoclimatol Palaeoecol, 446: 70–77

    Google Scholar 

  • Hao Q, Liu H, Yang S, Yang W, Song Z. 2019. Differentiated roles of mean climate and climate stability on post-glacial birch distributions in northern China. Holocene, 29: 1758–1766

    Google Scholar 

  • Hao Q, Liu H, Yin Y, Wang H, Feng M. 2014. Varied responses of forest at its distribution margin to Holocene monsoon development in northern China. Palaeogeogr Palaeoclimatol Palaeoecol, 409: 239–248

    Google Scholar 

  • Hijmans R J, Cameron S E, Parra J L, Jones P G, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 25: 1965–1978

    Google Scholar 

  • Hooghiemstra H. 2006. Immigration of oak into Northern South America: A paleo-ecological document. In: Kappelle M, ed. Ecology and Conservation of Neotropical Montane Oak Forests. Berlin Heidelberg: Springer. 17–28

    Google Scholar 

  • Hosner D, Wagner M, Tarasov P E, Chen X, Leipe C. 2016. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze Age: An overview. Holocene, 26: 1576–1593

    Google Scholar 

  • Hu F S, Hampe A, Petit R J. 2008. Paleoecology meets genetics: Deciphering past vegetational dynamics. Front Ecol Environ, 7: 371–379

    Google Scholar 

  • Huntley B, Birks H J B. 1983. An Atlas of Past and Present Pollen Maps for Europe: 0–13000 years ago. Cambridge: Cambridge University Press

    Google Scholar 

  • IPCC. 2018. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Kaal J, Marco Y C, Asouti E, Seijo M M, Cortizas A M, Casáis M C, Boado F C. 2011. Long-term deforestation in NW Spain: Linking the Holocene fire history to vegetation change and human activities. Quat Sci Rev, 30: 161–175

    Google Scholar 

  • Karl T R, Trenberth K E. 2003. Modern global climate change. Science, 302: 1719–1723

    Google Scholar 

  • Lepais O, Petit R J, Guichoux E, Lavabre J E, Alberto F, Kremer A, Gerber S. 2009. Species relative abundance and direction of introgression in oaks. Mol Ecol, 18: 2228–2242

    Google Scholar 

  • Lewis S L, Wheeler C E, Mitchard E T A, Koch A. 2019. Restoring natural forests is the best way to remove atmospheric carbon. Nature, 568: 25–28

    Google Scholar 

  • Li F, Gaillard M J, Cao X, Herzschuh U, Sugita S, Tarasov P E, Wagner M, Xu Q, Ni J, Wang W, Zhao Y, An C, Beusen A H W, Chen F, Feng Z, Goldewijk C G M K, Huang X, Li Y, Li Y, Liu H, Sun A, Yao Y, Zheng Z, Jia X. 2020. Towards quantification of Holocene anthropogenic land-cover change in temperate China: A review in the light of pollen-based REVEALS reconstructions of regional plant cover. Earth-Sci Rev, 203: 103119

    Google Scholar 

  • Li X, Sun N, Dodson J, Zhou X. 2012. Human activity and its impact on the landscape at the Xishanping site in the western Loess Plateau during 4800–4300 cal yr BP based on the fossil charcoal record. J Archaeol Sci, 39: 3141–3147

    Google Scholar 

  • Li X, Shang X, Dodson J, Zhou X. 2009. Holocene agriculture in the Guanzhong Basin in NW China indicated by pollen and charcoal evidence. Holocene, 19: 1213–1220

    Google Scholar 

  • Li Y, Zhou L, Cui H. 2008. Pollen indicators of human activity (in Chinese). Chin Sci Bull, 53: 1281–1293

    Google Scholar 

  • Li Y. 2019. Genetic structure and evolutionary history of Chinese oak species in Quercus section Cerris (in Chinese). Doctoral Dissertation. Nanjing: Nanjing Forestry University

    Google Scholar 

  • Lisitsyna O V, Giesecke T, Hicks S. 2011. Exploring pollen percentage threshold values as an indication for the regional presence of major European trees. Rev Palaeobot Palynol, 166: 311–324

    Google Scholar 

  • Liu H P, Tang X, Sun D, Wang K. 2001. Palynofloras of the Dajiuhu basin in Shengnongjia mountains during the last 12.5 ka (in Chinese with English abstract). Acta Micropal Sin, 18: 101–109

    Google Scholar 

  • Liu H, Xing Q, Ji Z, Xu L, Tian Y. 2003. An outline of Quaternary development of Fagus forest in China: Palynological and ecological perspectives. Flora-Morphol Distribution Funct Ecol Plants, 198: 249–259

    Google Scholar 

  • Liu H, Yin Y, Hao Q, Liu G. 2014. Sensitivity of temperate vegetation to Holocene development of East Asian monsoon. Quat Sci Rev, 98: 126–134

    Google Scholar 

  • Liu H Y, Yin Y. 2013. Response of forest distribution to past climate change: An insight into future predictions. Chin Sci Bull, 58: 4426–4436

    Google Scholar 

  • Liu H. 2002. Quaternary Ecology and Global Change. Beijing: Science Press

    Google Scholar 

  • Lombardo U, Iriarte J, Hilbert L, Ruiz-Pérez J, Capriles J M, Veit H. 2020. Early Holocene crop cultivation and landscape modification in Amazonia. Nature, 581: 190–193

    Google Scholar 

  • López-Tirado J, Hidalgo P J. 2016. Predictive modelling of climax oak trees in southern Spain: Insights in a scenario of global change. Plant Ecol, 217: 451–463

    Google Scholar 

  • Lyu S, Wang X, Zhang Y, Li Z. 2017. Different responses of Korean pine (Pinus koraiensis) and Mongolia oak (Quercus mongolica) growth to recent climate warming in northeast China. Dendrochronologia, 45: 113–122

    Google Scholar 

  • Magri D, Vendramin G G, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure J M, Tantau I, van der Knaap W O, Petit R J, de Beaulieu J L. 2006. A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence and genetic consequences. New Phytol, 171: 199–221

    Google Scholar 

  • Milecka K, Kupryjanowicz M, Makohonienko M, Okuniewska-Nowaczyk I, Nalepka D. 2004. Late Glacial and Holocene History of Vegetation in Poland Based on Isopollen Maps. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences

    Google Scholar 

  • Mölder A, Sennhenn-Reulen H, Fischer C, Rumpf H, Schönfelder E, Stockmann J, Nagel R V. 2019. Success factors for high-quality oak forest (Quercus robur, Q. petraea) regeneration. for Ecosyst, 6: 49

    Google Scholar 

  • Ni J, Yu G, Harrison S P, Prentice I C. 2010. Palaeovegetation in China during the late Quaternary: Biome reconstructions based on a global scheme of plant functional types. Palaeogeogr Palaeoclimatol Palaeoecol, 289: 44–61

    Google Scholar 

  • Nolan C, Overpeck J T, Allen J R M, Anderson P M, Betancourt J L, Binney H A, Brewer S, Bush M B, Chase B M, Cheddadi R, Djamali M, Dodson J, Edwards M E, Gosling W D, Haberle S, Hotchkiss S C, Huntley B, Ivory S J, Kershaw A P, Kim S H, Latorre C, Leydet M, Lézine A M, Liu K B, Liu Y, Lozhkin A V, McGlone M S, Marchant R A, Momohara A, Moreno P I, Müller S, Otto-Bliesner B L, Shen C, Stevenson J, Takahara H, Tarasov P E, Tipton J, Vincens A, Weng C, Xu Q, Zheng Z, Jackson S T. 2018. Past and future global transformation of terrestrial ecosystems under climate change. Science, 361: 920–923

    Google Scholar 

  • O’Connell C S, Ruan L, Silver W L. 2018. Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nat Commun, 9: 1348

    Google Scholar 

  • Peñaloza-Ramírez J M, Rodríguez-Correa H, González-Rodríguez A, Rocha-Ramírez V, Oyama K. 2020. High genetic diversity and stable Pleistocene distributional ranges in the widespread Mexican red oak Quercus castaneaNée (1801) (Fagaceae). Ecol Evol, 10: 4204–4219

    Google Scholar 

  • Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model, 190: 231–259

    Google Scholar 

  • Phillips S J, Dudík M, Schapire R E. 2004. A maximum entropy approach to species distribution modeling. In: Brodley C, ed. Proceedings of the Twenty-First International Conference on Machine Learning. New York: Association for Computing Machinery Press. 655–662

  • Qian H, Ricklefs R E. 2000. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature, 407: 180–182

    Google Scholar 

  • Qiu Y X, Fu C X, Comes H P. 2011. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenet Evol, 59: 225–244

    Google Scholar 

  • Reimer P J, Bard E, Bayliss A, Beck J W, Blackwell P G, Ramsey C B, Buck C E, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Haflidason H, Hajdas I, Hatté C, Heaton T J, Hoffmann D L, Hogg A G, Hughen K A, Kaiser K F, Kromer B, Manning S W, Niu M, Reimer R W, Richards D A, Scott E M, Southon J R, Staff R A, Turney C S M, van der Plicht J. 2013. Intcal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55: 1869–1887

    Google Scholar 

  • Ren G, Beug H J. 2002. Mapping Holocene pollen data and vegetation of China. Quat Sci Rev, 21: 1395–1422

    Google Scholar 

  • Ricklefs R E. 2004. A comprehensive framework for global patterns in biodiversity. Ecol Lett, 7: 1–15

    Google Scholar 

  • Robin V, Nadeau M J, Grootes P M, Bork H R, Nelle O. 2016. Too early and too northerly: Evidence of temperate trees in northern Central Europe during the Younger Dryas. New Phytol, 212: 259–268

    Google Scholar 

  • Royle J A, Chandler R B, Yackulic C, Nichols J D. 2012. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods Ecol Evol, 3: 545–554

    Google Scholar 

  • Scherrer D, Esperon-Rodriguez M, Beaumont L J, Barradas V L, Guisan A. 2021. National assessments of species vulnerability to climate change strongly depend on selected data sources. Divers Distrib, 27: 1367–1382

    Google Scholar 

  • Scherrer D, Körner C. 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr, 38: 406–416

    Google Scholar 

  • Shi M, Michalski S G, Welk E, Chen X, Durka W, Carine M. 2015. Phylogeography of a widespread Asian subtropical tree: Genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. J Biogeogr, 41: 1710–1720

    Google Scholar 

  • Stebich M, Rehfeld K, Schlütz F, Tarasov P E, Liu J, Mingram J. 2015. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake. Quat Sci Rev, 124: 275–289

    Google Scholar 

  • Steven J P, Miroslav D, Robert E S. 2018. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). New York: American Museum of Natural History

    Google Scholar 

  • Sun S, Zhang Y, Huang D, Wang H, Cao Q, Fan P, Yang N, Zheng P, Wang R. 2020. The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Sci Total Environ, 744: 140786

    Google Scholar 

  • Tian B, Liu R, Wang L, Qiu Q, Chen K, Liu J. 2009. Phylogeographic analyses suggest that a deciduous species (Ostryopsis davidiana Decne., Betulaceae) survived in northern China during the Last Glacial Maximum. J Biogeogr, 36: 2148–2155

    Google Scholar 

  • Tinner W, Colombaroli D, Heiri O, Henne P D, Steinacher M, Untenecker J, Vescovi E, Allen J R M, Carraro G, Conedera M, Joos F, Lotter A F, Luterbacher J, Samartin S, Valsecchi V. 2013. The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr, 83: 419–439

    Google Scholar 

  • van der Knaap W O, van Leeuwen J F N, Finsinger W, Gobet E, Pini R, Schweizer A, Valsecchi V, Ammann B. 2005. Migration and population expansion of Abies, Fagus, Picea, and Quercus since 15000 years in and across the Alps, based on pollen-percentage threshold values. Quat Sci Rev, 24: 645–680

    Google Scholar 

  • Wang L, Zhang Y. 2011. Discussion on the taxonomic position and nomenclature of Liaodong Oak (Fagaceae) (in Chinese with English abstract). Plant Sci J, 29: 749–754

    Google Scholar 

  • Wang S, Qi G, Knapp B O. 2019. Topography affects tree species distribution and biomass variation in a warm temperate, secondary forest. Forests, 10: 895

    Google Scholar 

  • Wang Y H, Jiang W M, Comes H P, Hu F S, Qiu Y X, Fu C X. 2015. Molecular phylogeography and ecological niche modelling of a wide-spread herbaceous climber, Tetrastigma hemsleyanum (Vitaceae): Insights into Plio-Pleistocene range dynamics of evergreen forest in subtropical China. New Phytol, 206: 852–867

    Google Scholar 

  • Wang Y. 2011. Research of Charcoal Remains at the Beiqian site, Jimo, Shandong Province (in Chinese). Master’s Dissertation. Jinan: Shandong University

    Google Scholar 

  • Wei H, Zhao Y. 2016. Surface pollen and its relationships with modern vegetation and climate in the Tianshan Mountains, northwestern China. Veget Hist Archaeobot, 25: 19–27

    Google Scholar 

  • Xu Q, Chen F, Zhang S, Cao X, Li J, Li Y, Li M, Chen J, Liu J, Wang Z. 2016. Vegetation succession and East Asian Summer Monsoon Changes since the last deglaciation inferred from high-resolution pollen record in Gonghai Lake, Shanxi Province, China. Holocene, 27: 835–846

    Google Scholar 

  • Xu Q, Li Y, Yang X, Zheng Z. 2005. Surface pollen assemblages of some major forest types in northern China (in Chinese with English abstract). Quat Sci, 25: 585–597

    Google Scholar 

  • Xu Q H, Li Y C, Yang X L, Zheng Z H. 2007. Quantitative relationship between pollen and vegetation in northern China. Sci China Ser D-Earth Sci, 50: 582–599

    Google Scholar 

  • Xu X, Li F, Lin Z, Song X. 2021. Holocene fire history in China: Responses to climate change and human activities. Sci Total Environ, 753: 142019

    Google Scholar 

  • Xu X, Wang Z, Rahbek C, Lessard J P, Fang J. 2013. Evolutionary history influences the effects of water-energy dynamics on oak diversity in Asia. J Biogeogr, 40: 2146–2155

    Google Scholar 

  • Yang J, Di X, Meng X, Feng L, Liu Z, Zhao G. 2016. Phylogeography and evolution of two closely related oak species (Quercus) from north and northeast China. Tree Genet Genomes, 12: 89

    Google Scholar 

  • Yang J, Vázquez L, Feng L, Liu Z, Zhao G. 2018. Climatic and soil factors shape the demographical history and genetic diversity of a deciduous oak (Quercus liaotungensis) in northern China. Front Plant Sci, 9: 1534

    Google Scholar 

  • Yu G, Chen X, Ni J, Cheddadi R, Guiot J, Han H, Harrison S P, Huang C, Ke M, Kong Z, Li S, Li W, Liew P, Liu G, Liu J, Liu Q, Liu K B, Prentice I C, Qui W, Ren G, Song C, Sugita S, Sun X, Tang L, Van Campo E, Xia Y, Xu Q, Yan S, Yang X, Zhao J, Zheng Z. 2000. Palaeovegetation of China: A pollen data-based synthesis for the mid-Holocene and Last Glacial Maximum. J Biogeogr, 27: 635–664

    Google Scholar 

  • Zeng Y F, Liao W J, Petit R J, Zhang D Y. 2010. Exploring species limits in two closely related Chinese oaks. PLoS ONE, 5: e15529

    Google Scholar 

  • Zeng Y F, Wang W T, Liao W J, Wang H F, Zhang D Y. 2015. Multiple glacial refugia for cool-temperate deciduous trees in northern East Asia: The Mongolian oak as a case study. Mol Ecol, 24: 5676–5691

    Google Scholar 

  • Zhang X, Li Y, Liu C, Xia T, Zhang Q, Fang Y. 2015. Phylogeography of the temperate tree species Quercus acutissima in China: Inferences from chloroplast DNA variations. Biochem Systatics Ecol, 63: 190–197

    Google Scholar 

  • Zhang X W, Li Y, Zhang Q, Fang Y M. 2018. Ancient east-west divergence, recent admixture, and multiple marginal refugia shape genetic structure of a widespread oak species (Quercus acutissima) in China. Tree Genet Genomes, 14: 88

    Google Scholar 

  • Zhang X. 2007. Vegetation Map of the People’s Republic of China (in Chinese). Beijing: Geology Press

    Google Scholar 

  • Zhao P, Xu C, Zhou M, Zhang B, Ge P, Zeng N, Liu H. 2018. Rapid regeneration offsets losses from warming-induced tree mortality in an aspen-dominated broad-leaved forest in northern China. PLoS ONE, 13: e0195630

    Google Scholar 

  • Zhou Z. 1992. Origin, phylogeny and dispersal of Quercus from China (in Chinese with English abstract). Acta Botan Yunnan, 14: 227–236

    Google Scholar 

  • Zorrilla-Azcué S, González-Rodríguez A, Oyama K, González M A, Rodríguez-Correa H. 2021. The DNA history of a lonely oak: Quercus humboldtii phylogeography in the Colombian Andes. Ecol Evol, 11: 6814–6828

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Xin Xu for providing charcoal data. This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0605101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyan Liu or Zhaoliang Song.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Q., Liu, H., Cheng, Y. et al. The LGM refugia of deciduous oak and distribution development since the LGM in China. Sci. China Earth Sci. 66, 80–91 (2023). https://doi.org/10.1007/s11430-021-9981-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9981-9

Keywords

Navigation