Skip to main content
Log in

The seismogenic structures and migration characteristics of the 2021 Yangbi M6.4 Earthquake sequence in Yunnan, China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

We constructed a more complete earthquake catalog in the 2021 Yangbi M6.4 focal area by re-scanning the continuous waveforms integrated with deep learning and template matching techniques, to explore the seismogenic structures of the Yangbi mainshock and its nucleation process. The new catalog has three times the number of earthquakes than the CENC catalog, and the magnitude completeness has dropped from 1.1 to 0.5. The distribution of earthquakes indicates a broom-shaped structure consisting of several oblique secondary faults and a strike-slip main fault which strikes to 315° with 80° dipping to NE. The earthquakes extend along the fault strike about 27 km in width and 2–13 km at depth and have noticeable variations on seismicity in the mainshock’s north and south. Compared with the north, the south has denser and higher magnitude aftershocks and also has a seismic gap probably weakened by the fluid at the depth range of about 5–6 km. The foreshocks were mainly active in the 8-kilometer-long fault zone south of the mainshock, which show a steady drop in b-values over time and a migration pattern toward the epicenter of two steep jumps, stagnation, and then acceleration which finally triggered the mainshock. While in the north, seldom foreshock occurred, and the aftershocks were delayed triggered 3 hours after the mainshock, and sparsely scattered shallow at depth and small in magnitude. To summarize, the northern part of the Yangbi seismogenic fault is thought to be relatively locked, whereas the southern part has a weakening zone and promotes pre-slip. The nucleation mechanism of the mainshock and its onset at the junction of the locked and pre-slip zones may be a combination of pre-slip and cascade triggering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie R E, Mori J. 1996. Occurrence patterns of foreshocks to large earthquakes in the western United States. Nature, 381: 303–307

    Article  Google Scholar 

  • Bouchon M, Karabulut H, Aktar M, Ozalaybey S, Schmittbuhl J, Bouin M P. 2011. Extended Nucleation of the 1999 Mw7.6 Izmit earthquake. Science, 331: 877–880

    Article  Google Scholar 

  • Chang Z, Chang H, Li J, Dai B, Zhou Q, Zhu J, Luo Z. 2016. The characteristic of active normal faulting of the southern segment of Weixi-Qiaohou fault (in Chinese). J Seismol Res, 39: 579–586

    Google Scholar 

  • Chen X, Shearer P M. 2013. California foreshock sequences suggest aseismic triggering process. Geophys Res Lett, 40: 2602–2607

    Article  Google Scholar 

  • Chen X, Shearer P M. 2016. Analysis of foreshock sequences in California and implications for earthquake triggering. Pure Appl Geophys, 173: 133–152

    Article  Google Scholar 

  • Chen Y, Liu J, Ge H. 1999. Pattern characteristics of foreshock sequences. Pure Appl Geophys, 155: 395–408

    Article  Google Scholar 

  • Dodge D A, Beroza G C, Ellsworth W L. 1996. Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. J Geophys Res, 101: 22371–22392

    Article  Google Scholar 

  • Duan M, Zhao C, Zhou L, Zhao C, Zuo K. 2021. Seismogenic structure of the 21 May 2021 Ms6.4 Yunnan Yangbi earthquake sequence (in Chinese). Chin J Geophys, 64: 3111–3125

    Google Scholar 

  • Ellsworth W L, Bulut F. 2018. Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nat Geosci, 11: 531–535

    Article  Google Scholar 

  • Frank W B, Poli P, Perfettini H. 2017. Mapping the rheology of the Central Chile subduction zone with aftershocks. Geophys Res Lett, 44: 5374–5382

    Article  Google Scholar 

  • Gulia L, Wiemer S. 2019. Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574: 193–199

    Article  Google Scholar 

  • Guo X, Yin H, Wang Z, Yang H. 2021. Earthquake centroid, seismic moment tensor and dynamic environment analysis of the Ms6.4 earthquake sequence in Yangbi, Yunnan on May 21, 2021 (in Chinese). Seismol Geol, 43: 806–826

    Google Scholar 

  • Helmstetter A, Sornette D. 2003. Foreshocks explained by cascades of triggered seismicity. J Geophys Res, 108: 2457

    Google Scholar 

  • Henry C, Das S. 2001. Aftershock zones of large shallow earthquakes: Fault dimensions, aftershock area expansion and scaling relations. Geophys J Int, 147: 272–293

    Article  Google Scholar 

  • Huang H, Meng L, Bürgmann R, Wang W, Wang K. 2020. Spatio-temporal foreshock evolution of the 2019 M6.4 and M7.1 Ridgecrest, California earthquakes. Earth Planet Sci Lett, 551: 116582

    Article  Google Scholar 

  • Jones L M, Wang B, Xu S, Fitch T J. 1982. The foreshock sequence of the February 4, 1975, Haicheng earthquake (M=7.3). J Geophys Res, 87: 4575–4584

    Article  Google Scholar 

  • Jones L, Molnar P. 1976. Frequency of foreshocks. Nature, 262: 677–679

    Article  Google Scholar 

  • Kanamori H. 1981. The Nature of Seismicity Patterns Before Large Earthquakes. AGU

  • Kato A, Ben-Zion Y. 2021. The generation of large earthquakes. Nat Rev Earth Environ, 2: 26–39

    Article  Google Scholar 

  • Kato A, Fukuda J, Nakagawa S, Obara K. 2016. Foreshock migration preceding the 2016 Mw7.0 Kumamoto earthquake, Japan. Geophys Res Lett, 43: 8945–8953

    Article  Google Scholar 

  • Kato A, Obara K, Igarashi T, Tsuruoka H, Nakagawa S, Hirata N. 2012. Propagation of slow slip leading up to the 2011 Mw9.0 Tohoku-Oki earthquake. Science, 335: 705–708

    Article  Google Scholar 

  • Kissling E, Ellsworth W L, Eberhart-Phillips D, Kradolfer U. 1994. Initial reference models in local earthquake tomography. J Geophys Res, 99: 19635–19646

    Article  Google Scholar 

  • Lei X, Wang Z, Ma S, He C. 2021. A preliminary study on the characteristics and mechanism of the May 2021 Ms6.4 Yangbi earthquake sequence, Yunnan, China (in Chinese). Acta Seismol Sin, 43: 1–25

    Google Scholar 

  • Lei X, Xie C, Fu B. 2011. Remotely triggered seismicity in Yunnan, southwestern China, following the 2004 Mw9.3 Sumatra earthquake. J Geophys Res, 116: B08303

    Google Scholar 

  • Li C, Zhang J, Wang K, Sun K, Shan X. 2021. The seismogenic fault of the 2021 Yunnan Yangbi Ms6.4 earthquake (in Chinese). Seismol Geol, 43: 706–721

    Google Scholar 

  • Li D, Ding Z, Wu P, Liu Z, Deng F, Zhang X, Zhao H. 2021. The characteristics of crustal structure and seismogenic background of Yangbi Ms6.4 earthquake on May 21, 2021 in Yunnan Province, China (in Chinese). Chin J Geophys, 64: 3083–3100

    Google Scholar 

  • Li Y, Wang D, Xu S, Fang L, Cheng Y, Luo G, Yan B, Bogdan E, Mori J. 2019. Thrust and conjugate strike-slip faults in the 17 June 2018 MJMA 6.1 (Mw5.5) Osaka, Japan, earthquake sequence. Seismol Res Lett, 90: 2132–2141

    Article  Google Scholar 

  • Lin J, Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J Geophys Res-Solid Earth, 109: B02303

    Article  Google Scholar 

  • Liu Y, Yao H, Zhang H, Fang H. 2021. The community velocity model V.1.0 of Southwest China, constructed from joint body- and surface-wave travel-time tomography. Seismol Res Lett, 92: 2972–2987

    Article  Google Scholar 

  • Long F, Qi Y, Yi G, Wu W, Wang G, Zhao X, Peng G. 2021. Relocation of the Ms6.4 Yangbi earthquake sequence on May 21, 2021 in Yunnan Province and its seismogenic structure analysis (in Chinese). Chin J Geophys, 64: 2631–2646

    Google Scholar 

  • Marsan D, Helmstetter A, Bouchon M, Dublanchet P. 2014. Foreshock activity related to enhanced aftershock production. Geophys Res Lett, 41: 6652–6658

    Article  Google Scholar 

  • Marzocchi W, Zhuang J. 2011. Statistics between mainshocks and foreshocks in Italy and Southern California. Geophys Res Lett, 38: 2011GL047165

    Article  Google Scholar 

  • McLaskey G C. 2019. Earthquake initiation from laboratory observations and implications for foreshocks. J Geophys Res-Solid Earth, 124: 12882–12904

    Article  Google Scholar 

  • Meng X, Yang H, Peng Z. 2018. Foreshocks, b value map, and aftershock triggering for the 2011 Mw5.7 Virginia earthquake. J Geophys Res-Solid Earth, 123: 5082–5098

    Article  Google Scholar 

  • Mignan A. 2014. The debate on the prognostic value of earthquake foreshocks: A meta-analysis. Sci Rep, 4: 4099

    Article  Google Scholar 

  • Mori J. 1996. Rupture directivity and slip distribution of the M4.3 foreshock to the 1992 Joshua Tree earthquake, Southern California. Bull Seismol Soc Am, 86: 805–810

    Article  Google Scholar 

  • Mousavi S M, Ellsworth W L, Zhu W, Chuang L Y, Beroza G C. 2020. Earthquake transformer—An attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat Commun, 11: 3952

    Article  Google Scholar 

  • Mousavi S M, Sheng Y, Zhu W, Beroza G C. 2019. STanford EArthquake Dataset (STEAD): A global data set of seismic signals for AI. IEEE Access, 7: 179464–179476

    Article  Google Scholar 

  • Ni S D, Wang W T, Li L. 2010. The April 14th, 2010 Yushu earthquake, a devastating earthquake with foreshocks. Sci China Earth Sci, 53: 791–793

    Article  Google Scholar 

  • Ogata Y. 2017. Statistics of earthquake activity: Models and methods for earthquake predictability studies. Annu Rev Earth Planet Sci, 45: 497–527

    Article  Google Scholar 

  • Omori F. 1894. On the aftershocks of earthquakes. J College Sci Imperial Univ Tokyo, 7: 111–200

    Google Scholar 

  • Peng Z, Zhao P. 2009. Migration of early aftershocks following the 2004 Parkfield earthquake. Nat Geosci, 2: 877–881

    Article  Google Scholar 

  • Perfettini H, Frank W B, Marsan D, Bouchon M. 2018. A model of aftershock migration driven by afterslip. Geophys Res Lett, 45: 2283–2293

    Article  Google Scholar 

  • Perol T, Gharbi M, Denolle M. 2018. Convolutional neural network for earthquake detection and location. Sci Adv, 4: e1700578

    Article  Google Scholar 

  • Reasenberg P A. 1999. Foreshock occurrence before large earthquakes. J Geophys Res, 104: 4755–4768

    Article  Google Scholar 

  • Ross Z E, Trugman D T, Hauksson E, Shearer P M. 2019. Searching for hidden earthquakes in Southern California. Science, 364: 767–771

    Article  Google Scholar 

  • Ruiz S, Metois M, Fuenzalida A, Ruiz J, Leyton F, Grandin R, Vigny C, Madariaga R, Campos J. 2014. Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw8.1 earthquake. Science, 345: 1165–1169

    Article  Google Scholar 

  • Scholz C H. 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am, 58: 399–415

    Article  Google Scholar 

  • Shcherbakov R, Zhuang J, Zöller G, Ogata Y. 2019. Forecasting the magnitude of the largest expected earthquake. Nat Commun, 10: 4051

    Article  Google Scholar 

  • Shelly D R, Beroza G C, Ide S. 2007. Non-volcanic tremor and low-frequency earthquake swarms. Nature, 446: 305–307

    Article  Google Scholar 

  • Shelly D R. 2020. A high-resolution seismic catalog for the initial 2019 Ridgecrest earthquake sequence: Foreshocks, aftershocks, and faulting complexity. Seismol Res Lett, 91: 1971–1978

    Article  Google Scholar 

  • Su J, Liu M, Zhang Y, Wang W, Li H, Yang J, Li X, Zhang M. 2021. High resolution earthquake catalog building for the 21 May 2021 Yangbi, Yunnan, Ms6.4 earthquake sequence using deep-learning phase picker (in Chinese). Chin J Geophys, 64: 2647–2656

    Google Scholar 

  • Sugan M, Kato A, Miyake H, Nakagawa S, Vuan A. 2014. The preparatory phase of the 2009 Mw6.3 L’Aquila earthquake by improving the detection capability of low-magnitude foreshocks. Geophys Res Lett, 41: 6137–6144

    Article  Google Scholar 

  • Sun Q, Guo Z, Pei S, Fu Y V, Chen Y J. 2022. Fluids Triggered the 2021 Mw6.1 Yangbi earthquake at an Unmapped Fault: Implications for the tectonics at the northern end of the Red River Fault. Seismol Res Lett, 93: 666–679

    Article  Google Scholar 

  • Sun Q, Li L. 2020. Deep slip rate along the northern segment of the Red River fault zone estimated from repeating microearthquakes (in Chinese). Chin J Geophys, 63: 478–491

    Google Scholar 

  • Tajima F, Kanamori H. 1985. Global survey of aftershock area expansion patterns. Phys Earth Planet Inter, 40: 77–134

    Article  Google Scholar 

  • Toda S, Stein R S, Sevilgen V, Lin J. 2011. Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—User guide. U.S. Geological Survey Open-File Report. 1060, 63

  • Trugman D T, Ross Z E. 2019. Pervasive foreshock activity across Southern California. Geophys Res Lett, 46: 8772–8781

    Article  Google Scholar 

  • Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bull Seismol Soc Am, 90: 1353–1368

    Article  Google Scholar 

  • Walter J I, Meng X, Peng Z, Schwartz S Y, Newman A V, Protti M. 2015. Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (Mw7.6) Nicoya Peninsula, Costa Rica earthquake. Earth Planet Sci Lett, 431: 75–86

    Article  Google Scholar 

  • Wang J, Xiao Z, Liu C, Zhao D, Yao Z. 2019. Deep learning for picking seismic arrival times. J Geophys Res-Solid Earth, 124: 6612–6624

    Article  Google Scholar 

  • Wang K, Chen Q, Sun S, Wang A. 2006. Predicting the 1975 Haicheng earthquake. Bull Seismol Soc Am, 96: 757–795

    Article  Google Scholar 

  • Wang S, Liu Y, Shan X, Qu C, Zhang G, Xie Z, Zhao D, Fan X, Hua J, Liang S, Zhang K, Dai C. 2021. Coseismic surface deformation and slip models of the 2021 Ms6.4 Yangbi (Yunnan, China) earthquake (in Chinese). Seismol Geol, 43: 692–705

    Google Scholar 

  • Wang W, Meng X, Peng Z, Chen Q F, Liu N. 2015. Increasing background seismicity and dynamic triggering behaviors with nearby mining activities around Fangshan Pluton in Beijing, China. J Geophys Res-Solid Earth, 120: 5624–5638

    Article  Google Scholar 

  • Wang M, Shen Z K, Gan W J, Liao H, Li T M, Ren J W, Qiao X J, Wang Q L, Yang Y L, Teruyuki K, Li P. 2008. GPS monitoring of temporal deformation of the Xianshuihe fault. Sci China Ser D-Earth Sci, 51: 1259–1266

    Article  Google Scholar 

  • Wang Y, Zhao T, Hu J, Liu C. 2021. Relocation and focal mechanism solutions of the 2021 Yangbi, Yunnan Ms6.4 earthquake sequence (in Chinese). Seismol Geol, 43: 847–863

    Google Scholar 

  • Wang Z. 2020. Effect of fluid on seismicity of fault zone—Case study in Sichuan-Yunnan region. Doctoral Dissertation. Beijing: Institute of Geology, China Earthquake Administration. 68–80

    Google Scholar 

  • Wessel P, Luis J F, Uieda L, Scharroo R, Wobbe F, Smith W H F, Tian D. 2019. The generic mapping tools version 6. Geochem Geophys Geosyst, 20: 5556–5564

    Article  Google Scholar 

  • Wiemer S. 2001. A software package to analyze seismicity: ZMAP. Seismol Res Lett, 72: 373–382

    Article  Google Scholar 

  • Wu G, Yu B, Hao H, Hu M, Tan H. 2021. The deep structural characteristics and the seismogenic structure of the Yangbi earthquake region and its surrounding areas (in Chinese). Seismol Geol, 43: 739–756

    Google Scholar 

  • Xiang H, Han Z, Guo S, Zhang W, Chen L. 2004. Large-scale dextralstrike-slip movement and associated tectonic deformation along the red-river fault zone (in Chinese). Seismol Geol, 26: 597–610

    Google Scholar 

  • Xiao Z, Wang J, Liu C, Li J, Zhao L, Yao Z. 2021. Siamese earthquake transformer: A pair-input deep-learning model for earthquake detection and phase picking on a seismic array. J Geophys Res-Solid Earth, 126: e21444

    Article  Google Scholar 

  • Xu X, Wen X, Zheng R, Ma W, Song F, Yu G. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunan Region. Sci China Ser D-Earth Sci, 46(suppl.): 210–226

    Article  Google Scholar 

  • Yang T, Li B, Fang L, Su Y, Zhong Y, Yang J, Qin M, Xu Y. 2022. Relocation of the Foreshocks and Aftershocks of the 2021 Ms6.4 Yangbi earthquake sequence, Yunnan, China. J Earth Sci, https://doi.org/10.1007/s12583-021-1527-7

  • Yao D, Huang Y H, Peng Z G, Castro R R. 2020. Detailed investigation of the foreshock sequence of the 2010 Mw7.2 El Mayor-Cucapah earthquake. J Geophys Res-Solid Earth, 125: e19076

    Google Scholar 

  • Ye T, Chen X, Huang Q, Cui T. 2021. Three-dimensional electrical resistivity structure in focal area of the 2021 Yangbi Ms6.4 earthquake and its implication for the seismogenic mechanism (in Chinese). Chin J Geophys, 64: 2267–2277

    Google Scholar 

  • Yin X, Jiang C, Cai R, Guo X, Jiang C, Wang Z, Zou X. 2021. Study of crustal tomography and precise earthquake location in Yangbi area, Yunnan Province (in Chinese). Seismol Geol, 43: 864–880

    Google Scholar 

  • Yoon C E, Yoshimitsu N, Ellsworth W L, Beroza G C. 2019. Foreshocks and mainshock nucleation of the 1999 Mw7.1 Hector Mine, California, Earthquake. J Geophys Res-Solid Earth, 124: 1569–1582

    Article  Google Scholar 

  • Yuan Z, Liu-Zeng J, Li X, Xu J, Yao W, Han L, Li T. 2021. Detailed mapping of the surface rupture of the 12 February 2014 Yutian Ms7.3 earthquake, Altyn Tagh fault, Xinjiang, China. Sci China Earth Sci, 64: 127–147

    Article  Google Scholar 

  • Zhang K, Gan W, Liang S, Xiao G, Dai C, Wang Y, Li C, Zhang L, Ma G. 2021. Coseismic displacement and slip distribution of the 2021 May 21, Ms6.4, Yangbi earthquake derived from GNSS observations (in Chinese). Chin J Geophys, 64: 2253–2266

    Google Scholar 

  • Zhang M, Ellsworth W L, Beroza G C. 2019. Rapid earthquake association and location. Seismol Res Lett, 90: 2276–2284

    Article  Google Scholar 

  • Zhang Y, An Y, Long F, Zhu G, Qin M, Zhong Y, Xu Q, Yang H. 2022. Short-term foreshock and aftershock patterns of the 2021 Ms6.4 Yangbi earthquake sequence. Seismol Res Lett, 93: 21–32

    Article  Google Scholar 

  • Zhang Y, Wang B, Lin G, Wang W, Yang W, Wu Z. 2020. Upper crustal velocity structure of Binchuan, Yunnan revealed by dense array local seismic tomography (in Chinese). Chin J Geophys, 63: 3292–3306

    Google Scholar 

  • Zhou Y, Ghosh A, Fang L, Yue H, Zhou S, Su Y. 2021. A high-resolution seismic catalog for the 2021 MS6.4/MW6.1 Yangbi earthquake sequence, Yunnan, China: Application of AI picker and matched filter. Earthq Sci, 34: 1–9

    Google Scholar 

  • Zhou Y, Yue H, Kong Q, Zhou S. 2019. Hybrid event detection and phase-picking algorithm using convolutional and recurrent neural networks. Seismol Res Lett, 90: 1079–1087

    Article  Google Scholar 

  • Zhu W, Beroza G C. 2018. PhaseNet: A deep-neural-network-based seismic arrival time picking method. Geophys J Int, 216: 261–273

    Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Chaozhong HU for his valuable discussion and the three anonymous reviewers for their constructive reviews and suggestions. The Network Center of the Institute of Earthquake Forecasting, China Earthquake Administration, provided access to seismic data of the permanent station used in this study. The b-value is calculated by ZMAP program, and the map is drawn by GMT6. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41574050, 41674058), the Project of Basic Scientific Research Foundation of Institute of Earthquake Forecasting, China Earthquake Administration (Grant Nos. 2020IEF0602, 2020IEF0504), and the support of Academician Yong CHEN Workstation of Yunnan Province (Grant No. 2014IC007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Wang, W., Peng, F. et al. The seismogenic structures and migration characteristics of the 2021 Yangbi M6.4 Earthquake sequence in Yunnan, China. Sci. China Earth Sci. 65, 1522–1537 (2022). https://doi.org/10.1007/s11430-021-9933-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9933-1

Keywords

Navigation