Skip to main content
Log in

S-wave velocity inversion and prediction using a deep hybrid neural network

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The S-wave velocity is a critical petrophysical parameter in reservoir description, prestack seismic inversion, and geomechanical analysis. However, obtaining the S-wave velocity from field measurements is difficult. When no measured S-wave data are available, petrophysical modelling provides the most accurate S-wave velocity prediction. However, because of the complexity of underground geological structures and diversity of rock minerals, the prediction results of petrophysical modelling are easily affected by factors such as the cognition and experience of the modeller. Therefore, the development of novel robust and simple S-wave velocity inversion and prediction methods independent of the modeller is critical. Inspired by ensemble learning and based on the geologic sedimentation law of reservoirs and their characteristics in logging response, an S-wave velocity inversion and prediction method based on deep hybrid neural network was developed by combining the classical convolution neural network (CNN) with the long short-term memory (LSTM) network. Considering the conventional logging data such as acoustic and density as the input in the proposed method, the CNN was used to establish the nonlinear mapping relationship between the input data and S-wave velocity, and the LSTM network was used to integrate the vertical variation trend of the stratum. Thus, intelligent data-driven inversion and prediction of the S-wave velocity were realised. The experimental results revealed that the proposed method exhibited a strong generalisation ability and could obtain prediction results comparable to those of petrophysical modelling with a single-well data set for training. Thus, a novel methodology for robust and convenient S-wave velocity prediction was devised. The proposed method has considerable academic and application implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhundi H, Ghafoori M, Lashkaripour G R. 2014. Prediction of shear wave velocity using artificial neural network technique, multiple regression and petrophysical data: A case study in Asmari Reservoir (SW Iran). Open J Geo, 04: 303–313

    Article  Google Scholar 

  • Anemangely M, Ramezanzadeh A, Tokhmechi B. 2017. Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: A case study from Ab-Teymour Oilfield. J Nat Gas Sci Eng, 38: 373–387

    Article  Google Scholar 

  • Araya-Polo M, Jennings J, Adler A, Dahlke T. 2018. Deep-learning tomography. Leading Edge, 37: 58–66

    Article  Google Scholar 

  • Asoodeh M, Bagheripour P. 2012. Prediction of compressional, shear, and stoneley wave velocities from conventional well log data using a committee machine with intelligent systems. Rock Mech Rock Eng, 45: 45–63

    Article  Google Scholar 

  • Azadpour M, Saberi M R, Javaherian A, Shabani M. 2020. Rock physics model-based prediction of shear wave velocity utilizing machine learning technique for a carbonate reservoir, southwest Iran. J Pet Sci Eng, 195: 107864

    Article  Google Scholar 

  • Bai J, Song Z, Su L, Yang W, Zhu L, Li S. 2012. Error analysis of shear-velocity prediction by the Xu-White model (in Chinese). Chin J Geophys, 55: 589–595

    Google Scholar 

  • Bengio Y, Simard P, Frasconi P. 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw, 5: 157–166

    Article  Google Scholar 

  • Bergen K J, Johnson P A, de Hoop M V, Beroza G C. 2019. Machine learning for data-driven discovery in solid Earth geoscience. Science, 363: eaau0323

    Article  Google Scholar 

  • Berryman J G. 1980. Long-wavelength propagation in composite elastic media I. Spherical inclusions. J Acoust Soc Am, 68: 1809–1819

    Article  Google Scholar 

  • Buland A, Omre H. 2003. Bayesian linearized AVO inversion. Geophysics, 68: 185–198

    Article  Google Scholar 

  • Cao J. 2017. Deep learning and its application in deep gas reservoir prediction (in Chinese). Comput Tech Geophys Geochem Explor, 39: 775–782

    Google Scholar 

  • Cao J, Wu S, He X. 2016. Gas reservoir identification basing on deep learning of seismic-print Characteristics. In: AGU Fall Meeting Abstracts, doi: 2016AGUFMNS31A1926C

  • Cao J, Wu S. 2017. Deep learning: Chance and challenge for deep gas reservoir identification. In: International Geophysical Conference. Qingdao. 17–20

  • Castagna J P, Batzle M L, Eastwood R L. 1985. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50: 571–581

    Article  Google Scholar 

  • Chen W, Yang L, Zha B, Zhang M, Chen Y. 2020. Deep learning reservoir porosity prediction based on multilayer long short-term memory network. Geophysics, 85: WA213–WA225

    Article  Google Scholar 

  • Chen Y, Zhang D. 2020. Well log generation via ensemble long short-term memory (EnLSTM) network. Geophys Res Lett, 47: e87685

    Article  Google Scholar 

  • Cui R, Cao D, Liu Q, Zhu Z, Jia Y. 2021. VP and VS prediction from digital rock images using a combination of U-Net and convolutional neural networks. Geophysics, 86: MR27–MR37

    Article  Google Scholar 

  • Eskandari H, Rezaee M R, Mohammadnia, M. 2004. Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir South-West Iran. CSEG Recorder, 42: 40–48

    Google Scholar 

  • Feng R. 2020. Estimation of reservoir porosity based on seismic inversion results using deep learning methods. J Nat Gas Sci Eng, 77: 103270

    Article  Google Scholar 

  • Gao H, Wu X, Liu G. 2021. ChannelSeg3D: Channel simulation and deep learning for channel interpretation in 3D seismic images. Geophysics, 86: IM73–IM83

    Article  Google Scholar 

  • Goltsev A, Rachkovskij D. 2001. A recurrent neural network for partitioning of hand drawn characters into strokes of different orientations. Int J Neur Syst, 11: 463–475

    Article  Google Scholar 

  • Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning (Vol. 1). Cambridge: MIT Press. 326–366

    Google Scholar 

  • Graves A, Mohamed A R, Hinton G. 2013. Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Vancouver. 6645–6649

  • Graves A, Schmidhuber J. 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18: 602–610

    Article  Google Scholar 

  • Greenberg M L, Castagna J P. 1992. Shear-wave velocity estimation in porous rocks: Theoretical formulation, preliminary verification and applications. Geophys Prospect, 40: 195–209

    Article  Google Scholar 

  • Guo Q, Jin S, Li M, Yang Q, Xu K, Ju Y, Zhang J, Xuan J, Liu J, Su Y, Xu Q, Liu Y. 2020. Application of deep learning in ecological resource research: Theories, methods, and challenges. Sci China Earth Sci, 63: 1457–1474

    Article  Google Scholar 

  • Han D, Nur A, Morgan D. 1986. Effects of porosity and clay content on wave velocities in sandstones. Geophysics, 51: 2093–2107

    Article  Google Scholar 

  • Hinton G E, Osindero S, Teh Y W. 2006. A fast learning algorithm for deep belief nets. Neural Comput, 18: 1527–1554

    Article  Google Scholar 

  • Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput, 9: 1735–1780

    Article  Google Scholar 

  • Imamverdiyev Y, Sukhostat L. 2019. Lithological facies classification using deep convolutional neural network. J Pet Sci Eng, 174: 216–228

    Article  Google Scholar 

  • Jeong J, Park E, Emelyanova I, Pervukhina M, Esteban L, Yun S T. 2021. Application of conditional generative model for sonic log estimation considering measurement uncertainty. J Pet Sci Eng, 196: 108028

    Article  Google Scholar 

  • Jørstad A, Mukerji T, Mavko G. 1999. Model-based shear-wave velocity estimation versus empirical regressions. Geophys Prospecting, 47: 785–797

    Article  Google Scholar 

  • Krief M, Garat J, Stellingwerf J, Ventre J. 1990. A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic). Log Analyst, 31: 355–369

    Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton G. 2012. ImageNet classification with deep convolutional neural networks. Adv Neural Inform Process Syst, 25: 1097–1105

    Google Scholar 

  • Kuang L, Liu H, Ren Y, Luo K, Shi M, Su J, Li X. 2021. Application and development trend of artificial intelligence in petroleum exploration and development. Pet Explor Dev, 48: 1–14

    Article  Google Scholar 

  • Lambrecht B N, Vanderkerken M, Hammad H. 2018. The emerging role of ADAM metalloproteinases in immunity. Nat Rev Immunol, 18: 745–758

    Article  Google Scholar 

  • Langer H, Falsaperla S, Masotti M, Campanini R, Spampinato S, Messina A. 2009. Synopsis of supervised and unsupervised pattern classification techniques applied to volcanic tremor data at Mt Etna, Italy. Geophys J Int, 178: 1132–1144

    Article  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521: 436–444

    Article  Google Scholar 

  • Lee S H. 1990. Regression models of shear wave velocities in Taipei basin. J Chin Institute Eng, 13: 519–532

    Article  Google Scholar 

  • Li D, Liu X, Zha W, Yang J, Lu D. 2020. Automatic well test interpretation based on convolutional neural network for a radial composite reservoir. Pet Explor Dev, 47: 623–631

    Article  Google Scholar 

  • Lin N, Zhang D, Zhang K, Wang S, Fu C, Zhang J, Zhang C. 2018. Predicting distribution of hydrocarbon reservoirs with seismic data based on learning of the small-sample convolution neural network (in Chinese). Chin J Geophys, 61: 4110–4125

    Google Scholar 

  • Li N, Xu B, Wu H, Feng Z, Li Y, Wang K, Liu P. 2021. Application status and prospects of artificial intelligence in well logging and formation evaluation (in Chinese). Acta Petrol Sin, 42: 508–522

    Google Scholar 

  • Li W, Wang H, Yao Z, Liu Y, Chang X. 2009. Shear-wave velocity estimation and fluid substitution by constraint method (in Chinese). Chin J Geophys, 52: 785–791

    Google Scholar 

  • Lin S S, Shen S L, Zhang N, Zhou A. 2021. Modelling the performance of EPB shield tunnelling using machine and deep learning algorithms. Geosci Front, 12: 101177

    Article  Google Scholar 

  • Lindberg D V, Rimstad E, Omre H. 2015. Inversion of well logs into facies accounting for spatial dependencies and convolution effects. J Pet Sci Eng, 134: 237–246

    Article  Google Scholar 

  • Luo S, Yang P, Hu G, Liu S. 2016. S-wave velocity prediction based on the modified P-L model and matrix equation iteration (in Chinese). Chin J Geophys, 59: 1839–1848

    Google Scholar 

  • Ma X, Tao Z, Wang Y, Yu H, Wang Y. 2015. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Tran Res Part C-Emer Technol, 54: 187–197

    Article  Google Scholar 

  • Mousavi S M, Horton S P, Langston C A, Samei B. 2016. Seismic features and automatic discrimination of deep and shallow induced-micro-earthquakes using neural network and logistic regression. Geophys J Int, 207: 29–46

    Article  Google Scholar 

  • Nebauer C. 1998. Evaluation of convolutional neural networks for visual recognition. IEEE Trans Neural Netw, 9: 685–696

    Article  Google Scholar 

  • Olayiwola T, Sanuade O A. 2021. A data-driven approach to predict compressional and shear wave velocities in reservoir rocks. Petroleum, 7: 199–208

    Article  Google Scholar 

  • Pan J G, Wang H B, Li C, Zhao J G. 2015. Effect of pore structure on seismic rock-physics characteristics of dense carbonates. Appl Geophys, 12: 1–10

    Article  Google Scholar 

  • Pham N, Wu X, Zabihi Naeini E. 2020. Missing well log prediction using convolutional long short-term memory network. Geophysics, 85: WA159–WA171

    Article  Google Scholar 

  • Qi Q, Cheng A C H, Li Y E. 2019. Determination of formation shear attenuation from dipole sonic log data. Geophysics, 84: D73–D79

    Article  Google Scholar 

  • Qi Q, Müller T M, Pervukhina M. 2017. Sonic QP/QS ratio as diagnostic tool for shale gas saturation. Geophysics, 82: MR97–MR103

    Article  Google Scholar 

  • Rajabi M, Bohloli B, Gholampour Ahangar E. 2010. Intelligent approaches for prediction of compressional, shear and Stoneley wave velocities from conventional well log data: A case study from the Sarvak carbonate reservoir in the Abadan Plain (Southwestern Iran). Comput Geoscis, 36: 647–664

    Article  Google Scholar 

  • Rezaee M R, Kadkhodaie-Ilkhchi A, Barabadi A. 2007. Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia. J Pet Sci Eng, 55: 201–212

    Article  Google Scholar 

  • Russell B H, Hedlin K, Hilterman F J, Lines L R. 2003. Fluid-property discrimination with AVO: A Biot-Gassmann perspective. Geophysics, 68: 29–39

    Article  Google Scholar 

  • Saad O M, Chen Y. 2020. Deep denoising autoencoder for seismic random noise attenuation. Geophysics, 85: V367–V376

    Article  Google Scholar 

  • Sohail G M, Hawkes C D. 2020. An evaluation of empirical and rock physics models to estimate shear wave velocity in a potential shale gas reservoir using wireline logs. J Pet Sci Eng, 185: 106666

    Article  Google Scholar 

  • Sun Q, Li N, Duan Y, Li H, Tang H. 2021. Logging-while-drilling formation dip interpretation based on long short-term memory. Pet Explor Dev, 48: 978–986

    Article  Google Scholar 

  • Tan M, Peng X, Cao H, Wang S, Yuan Y. 2015. Estimation of shear wave velocity from wireline logs in gas-bearing shale. J Pet Sci Eng, 133: 352–366

    Article  Google Scholar 

  • Tian Y, Gao J, Wang D, Chen D. 2021. Removing strong seismic reflection based on the deep neural network (in Chinese). Chin J Geophys, 64: 2780–2794

    Google Scholar 

  • Tian M, Omre H, Xu H. 2021. Inversion of well logs into lithology classes accounting for spatial dependencies by using hidden markov models and recurrent neural networks. J Pet Sci Eng, 196: 107598

    Article  Google Scholar 

  • Wang J, Cao J, Yuan S. 2020. Shear wave velocity prediction based on adaptive particle swarm optimization optimized recurrent neural network. J Pet Sci Eng, 194: 107466

    Article  Google Scholar 

  • Wang K, Huang Q, Wu S. 2020. Application of long short-term memory neural network in geoelectric field data processing (in Chinese). Chin J Geophys, 63: 3015–3024

    Google Scholar 

  • Wang P, Peng S. 2019. On a new method of estimating shear wave velocity from conventional well logs. J Pet Sci Eng, 180: 105–123

    Article  Google Scholar 

  • Wu X, Geng Z, Shi Y, Pham N, Fomel S, Caumon G. 2020. Building realistic structure models to train convolutional neural networks for seismic structural interpretation. Geophysics, 85: WA27–WA39

    Article  Google Scholar 

  • Xi X, Huang J. 2020. Location and imaging of scatterers in seismic migration profiles based on convolution neural network (in Chinese). Chin J Geophys, 63: 687–714

    Google Scholar 

  • Xing F, Xie Y, Su H, Liu F, Yang L. 2017. Deep learning in microscopy image analysis: A survey. IEEE Trans Neural Netw Learn Syst, 29: 4550–4568

    Article  Google Scholar 

  • Xu J, Tan M, Wang X, Wu C. 2017. Predicting acoustic-wave velocities and fluid sensitivity to elastic properties in fractured carbonate formation. Interpretation, 5: SB69–SB80

    Article  Google Scholar 

  • Xu S, Payne M A. 2009. Modeling elastic properties in carbonate rocks. Leading Edge, 28: 66–74

    Article  Google Scholar 

  • Xu S, White R E. 1996. A physical model for shear-wave velocity pre-diction1. Geophys Prospect, 44: 687–717

    Article  Google Scholar 

  • Ye S, Zhu H, Li R, Yang Y, Li Q. 2017. Tracing natural gas migration by integrating organic and inorganic geochemical data: A case study of the Jurassic gas fields in western Sichuan Basin, SW China. Pet Explor Dev, 44: 582–594

    Article  Google Scholar 

  • Yin X Y, Zong Z Y, Wu G C. 2015. Research on seismic fluid identification driven by rock physics. Sci China Earth Sci, 58: 159–171

    Article  Google Scholar 

  • Yu S, Ma J. 2021. Deep learning for geophysics: Current and future trends. Rev Geophys, 59: e00742

    Article  Google Scholar 

  • Yu S, Ma J, Wang W. 2019. Deep learning for denoising, Geophysics, 84: V333–V350

    Article  Google Scholar 

  • Zhang B, Jin S, Liu C, Guo Z, Liu X. 2020. Prediction of shear wave velocity based on a statistical rock-physics model and Bayesian theory. J Pet Sci Eng, 195: 107710

    Article  Google Scholar 

  • Zhang D, Chen Y, Meng J. 2018. Synthetic well logs generation via Recurrent Neural Networks. Pet Explor Dev, 45: 629–639

    Article  Google Scholar 

  • Zhang G, Chen H, Wang Q, Yin X. 2013. Estimation of S-wave velocity and anisotropic parameters using fractured carbonate rock physics model (in Chinese). Chin J Geophys, 56: 1707–1715

    Google Scholar 

  • Zhang G, Wang Z, Chen Y. 2018. Deep learning for seismic lithology prediction. Geophys J Int, 215: 1368–1387

    Google Scholar 

  • Zhang Y, Yu Z, Hu T, He C. 2021. Multi-trace joint downhole microseismic phase detection and arrival picking method based on U-Net (in Chinese). Chin J Geophys, 64: 2073–2085

    Google Scholar 

  • Zhang Y, Zhong H R, Wu Z Y, Zhou H, Ma Q Y. 2020. Improvement of petrophysical workflow for shear wave velocity prediction based on machine learning methods for complex carbonate reservoirs. J Pet Sci Eng, 192: 107234

    Article  Google Scholar 

  • Zhao M, Chen S, Dave Y. 2019. Waveform classification and seismic recognition by convolution neural network (in Chinese). Chin J Geophys, 62: 374–382

    Google Scholar 

  • Zhou F, Jin L, Dong J. 2017. Review of convolutional neural networks (in Chinese). Chin J Comput, 40: 1229–1251

    Google Scholar 

  • Zhu K, Wang L, Du Y, Jiang C, Sun Z. 2020. DeepLog: Identify tight gas reservoir using multi-log signals by a fully convolutional network. IEEE Geosci Remote Sens Lett, 17: 568–571

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the valuable comments and revision suggestions from the responsible editor and anonymous reviewers. This work was supported by the National Natural Science Foundation of China (Grant Nos. 42030812, 42042046, 41974160) and the project of SINOPEC Science and Technology Department (Grant No. P20055-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxing Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cao, J., Zhao, S. et al. S-wave velocity inversion and prediction using a deep hybrid neural network. Sci. China Earth Sci. 65, 724–741 (2022). https://doi.org/10.1007/s11430-021-9870-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9870-8

Keywords

Navigation