Skip to main content
Log in

Indication of paleoecological evidence on the evolution of alpine vegetation productivity and soil erosion in central China since the mid-Holocene

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Although alpine ecosystems have been commonly recognized as sensitive to recent climate change, few studies have examined its impact on the long-term productivity of vegetation and soil erosion. Using paleoecological records, these two aspects were examined in the alpine zone of the Taibai Mountains (elevation, 3767 m) in monsoon-dominated East Asia since the middle Holocene. Proxies for the productivity of vegetation and severity of soil erosion from high-resolution alpine lacustrine records show that the productivity was closely related to mean annual temperature and soil erosion, to summer precipitation from the East Asian Summer Monsoon (EASM). Specifically, when the mean annual temperature was low and precipitation was abundant, during 5800–4000 calendar years before the present (cal. yr BP), the alpine ecosystem was characterized by low vegetation productivity and severe soil erosion. However, the productivity increased and soil erosion decreased from 4000 cal. yr BP onwards. These results highlight the role of paleoecological evidence in studying ecosystem services on longer time scales, which is significant in making policies for sustainable development under climate change in regions for which such long-term monitoring data are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson E P, Marengo J, Villalba R, Halloy S, Young B, Cordero D, Gast F, Jaimes E, Ruiz D. 2011. Consequences of climate change for ecosystems and ecosystem services in the tropical Andes. In: Herzog S K, Martínez R, Jørgensen P M, Tiessen H, eds. Climate Change and Biodiversity in the Tropical Andes. New York: SCOPE, IAI. 1–18

    Google Scholar 

  • Berhe A A, Barnes R T, Six J, Marín-Spiotta E. 2018. Role of soil erosion in biogeochemical cycling of essential elements: Carbon, nitrogen, and phosphorus. Annu Rev Earth Planet Sci, 46: 521–548

    Article  Google Scholar 

  • Blaauw M, Christen J A. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal, 6: 457–474

    Article  Google Scholar 

  • Chen F H, Cheng B, Zhao Y, Zhu Y, Madsen D B. 2006. Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China. Holocene, 16: 675–684

    Article  Google Scholar 

  • Cheng Y, Liu H Y, Wang H Y, Piao S L, Yin Y, Ciais P, Wu X C, Luo Y, Zhang C N, Song Y Q, Gao Y S, Qiu A A. 2017. Contrasting effects of winter and summer climate on alpine timberline evolution in monsoon-dominated East Asia. Quat Sci Rev, 169: 278–287

    Article  Google Scholar 

  • Dearing J A. 1999. Holocene environmental change from magnetic proxies in lake sediments. In: Maher B A, Thompson R, eds. Quaternary Climates, Environments and Magnetism. Cambridge: Cambridge University Press. 231–278

    Chapter  Google Scholar 

  • Dearing J A, Yang X, Dong X, Zhang E, Chen X, Langdon P G, Zhang K, Zhang W, Dawson T P. 2012. Extending the timescale and range of ecosystem services through paleoenvironmental analyses, exemplified in the lower Yangtze basin. Proc Natl Acad Sci USA, 109: E1111–E1120

    Article  Google Scholar 

  • Ding J, Yang T, Zhao Y, Liu D, Wang X, Yao Y, Peng S, Wang T, Piao S. 2018. Increasingly important role of atmospheric aridity on Tibetan alpine grasslands. Geophys Res Lett, 45: 2852–2859

    Article  Google Scholar 

  • Ernakovich J G, Hopping K A, Berdanier A B, Simpson R T, Kachergis E J, Steltzer H, Wallenstein M D. 2014. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob Change Biol, 20: 3256–3269

    Article  Google Scholar 

  • Evans M E, Heller F. 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. London: Academic Press

    Google Scholar 

  • Fu B J, Liu Y, Lu Y H, He C S, Zeng Y, Wu B F. 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol Compl, 8: 284–293

    Article  Google Scholar 

  • Harsch M A, Hulme P E, McGlone M S, Duncan R P. 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett, 12: 1040–1049

    Article  Google Scholar 

  • He F. 2011. Simulating transient climate evolution of the last deglaciation with CCSM3. Dissertation for Doctoral Degree. Madison: University of Wisconsin-Madison

    Google Scholar 

  • Hu F S, Finney B P, Brubaker L B. 2001. Effects of Holocene Alnus expansion on aquatic productivity, nitrogen cycling, and soil development in southwestern Alaska. Ecosystems, 4: 358–368

    Article  Google Scholar 

  • Huang X, Chen C, Jia W, An C, Zhou A, Zhang J, Jin M, Xia D, Chen F, Grimm E C. 2015. Vegetation and climate history reconstructed from an alpine lake in central Tienshan Mountains since 8.5 ka BP. Palaeogeogr Palaeoclimatol Palaeoecol, 432: 36–48

    Article  Google Scholar 

  • Jeffers E S, Nogué S, Willis K J. 2015. The role of palaeoecological records in assessing ecosystem services. Quat Sci Rev, 112: 17–32

    Article  Google Scholar 

  • Johnson C G. 2003. Green fescue rangelands: Changes over time in the Wallowa Mountains. Gen. Tech. Rep. PNW-GTR-569. Portland, OR: U.S. Forest Service, Pacific Northwest Research Station

    Book  Google Scholar 

  • Kerns B K, Powell D C, Mellmann-Brown S, Carnwath G, Kim J B. 2018. Effects of projected climate change on vegetation in the Blue Mountains ecoregion, USA. Clim Services, 10: 33–43

    Article  Google Scholar 

  • Kylander M E, Klaminder J, Wohlfarth B, Löwemark L. 2013. Geochemical responses to paleoclimatic changes in southern Sweden since the late glacial: The Hässeldala Port lake sediment record. J Paleolimnol, 50: 57–70

    Article  Google Scholar 

  • Lepš J, Šmilauer P. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Li J Y, Dodson J, Yan H, Wang W M, Innes J B, Zong Y Q, Zhang X J, Xu Q H, Ni J, Lu F Y. 2018. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Clim Dyn, 50: 1101–1113

    Article  Google Scholar 

  • Liu H, Tang Z, Dai J, Tang Y, Cui H. 2002. Larch timberline and its development in North China. Mountain Res Dev, 22: 359–367

    Article  Google Scholar 

  • Liu Z Y, Wen X Y, Brady E C, Otto-Bliesner B, Yu G, Lu H Y, Cheng H, Wang Y J, Zheng W P, Ding Y H, Edwards R L, Cheng J, Liu W, Yang H. 2014. Chinese cave records and the East Asia summer monsoon. Quat Sci Rev, 83: 115–128

    Article  Google Scholar 

  • Mace G M, Norris K, Fitter A H. 2012. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol Evol, 27: 19–26

    Article  Google Scholar 

  • Maher K, Chamberlain C P. 2014. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science, 343: 1502–1504

    Article  Google Scholar 

  • Moore P D, Webb J A, Collison M E. 1991. Pollen Analysis. Oxford: Blackwell Scientific Publications

    Google Scholar 

  • Nunes J P, Seixas J, Pacheco N R. 2008. Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrol Process, 22: 3115–3134

    Article  Google Scholar 

  • Oldfield F. 1991. Environmental magnetism—A personal perspective. Quat Sci Rev, 10: 73–85

    Article  Google Scholar 

  • Reimer P J, Bard E, Bayliss A, Beck J W, Blackwell P G, Ramsey C B, Buck C E, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Haflidason H, Hajdas I, Hatté C, Heaton T J, Hoffmann D L, Hogg A G, Hughen K A, Kaiser K F, Kromer B, Manning S W, Niu M, Reimer R W, Richards D A, Scott E M, Southon J R, Staff R A, Turney C S M, van der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55: 1869–1887

    Article  Google Scholar 

  • Royall D. 2001. Use of mineral magnetic measurements to investigate soil erosion and sediment delivery in a small agricultural catchment in limestone terrain. Catena, 46: 15–34

    Article  Google Scholar 

  • Schrömter D, Cramer W, Leemans R, Prentice I C, Araújo M B, Arnell N W, Bondeau A, Bugmann H, Carter T R, Gracia C A, de la Vega-Leinert A C, Erhard M, Ewert F, Glendining M, House J I, Kankaanpää S, Klein R J T, Lavorel S, Lindner M, Metzger M J, Meyer J, Mitchell T D, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes M T, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B. 2005. Ecosystem service supply and vulnerability to global change in Europe. Science, 310: 1333–1337

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L. 2007. Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press

    Google Scholar 

  • Sugita S. 2007a. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. Holocene, 17: 229–241

    Article  Google Scholar 

  • Sugita S. 2007b. Theory of quantitative reconstruction of vegetation II: All you need is LOVE. Holocene, 17: 243–257

    Article  Google Scholar 

  • Wang H Y, Cheng Y, Luo Y, Zhang C N, Deng L, Yang X Y, Liu H Y. 2019. Variations in erosion intensity and soil maturity as revealed by mineral magnetism of sediments from an alpine lake in monsoon-dominated central east China and their implications for environmental changes over the past 5500 years. Holocene, 29: 1835–1855

    Article  Google Scholar 

  • Wang H Y, Liu H Y, Liu Y H, Cui H T, Abrahamsen N. 2010. Mineral magnetism and other characteristics of sediments from an alpine lake (3,410 m a.s.l.) in central China and implications for late Holocene climate and environment. J Paleolimnol, 43: 345–367

    Article  Google Scholar 

  • Wang H Y, Song Y Q, Cheng Y, Luo Y, Gao Y S, Deng L, Liu H Y. 2016. Mineral magnetism and other characteristics of sediments from a subalpine lake (3080 m a.s.l.) in central east China and their implications on environmental changes for the last 5770 years. Earth Planet Sci Lett, 452: 44–59

    Article  Google Scholar 

  • Wang Y J, Cheng H, Edwards R L, He Y Q, Kong X G, An Z S, Wu J Y, Kelly M J, Dykoski C A, Li X D. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308: 854–857

    Article  Google Scholar 

  • Wang Y J, Cheng H, Edwards R L, Kong X G, Shao X H, Chen S T, Wu J Y, Jiang X Y, Wang X F, An Z S. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451: 1090–1093

    Article  Google Scholar 

  • Xu Q H, Chen F H, Zhang S R, Cao X Y, Li J Y, Li Y C, Li M Y, Chen J H, Liu J B, Wang Z L. 2017. Vegetation succession and East Asian Summer Monsoon Changes since the last deglaciation inferred from high-resolution pollen record in Gonghai Lake, Shanxi Province, China. Holocene, 27: 835–846

    Article  Google Scholar 

  • Zhao G J, Mu X M, Wen Z M, Wang F, Gao P. 2013. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad Develop, 24: 499–510

    Article  Google Scholar 

  • Zhao Y, Chen F H, Zhou A F, Yu Z C, Zhang K. 2010. Vegetation history, climate change and human activities over the last 6200 years on the Liupan Mountains in the southwestern Loess Plateau in central China. Palaeogeogr Palaeoclimatol Palaeoecol, 293: 197–205

    Article  Google Scholar 

  • Zhao Y, Yu Z C, Chen F H, Zhang J W, Yang B. 2009. Vegetation response to Holocene climate change in monsoon-influenced region of China. Earth-Sci Rev, 97: 242–256

    Article  Google Scholar 

  • Zhou Z C, Shangguan Z P, Zhao D. 2006. Modeling vegetation coverage and soil erosion in the Loess Plateau Area of China. Ecol Model, 198: 263–268

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41901092, 41171160), and the Fundamental Research Funds for the Central Universities of China (Grant No. GK202003069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyan Liu or Hongya Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Liu, H., Wang, H. et al. Indication of paleoecological evidence on the evolution of alpine vegetation productivity and soil erosion in central China since the mid-Holocene. Sci. China Earth Sci. 64, 1774–1783 (2021). https://doi.org/10.1007/s11430-020-9757-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9757-1

Keywords

Navigation