Skip to main content
Log in

Numerical simulation of landscape evolution and mountain uplift history constrain—A case study from the youthful stage mountains around the central Hexi Corridor, NE Tibetan Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Landscape evolution models (LEMs) are essential tools for analyzing tectonic-climate interactions and reproducing landform-shaping processes. In this study we used a LEM to simulate the evolution of the mountains from the central Hexi Corridor in the northeastern Tibetan Plateau, where the climate is arid and the surface processes are relatively uniform. However, there are pronounced differences in the topography between the mountains around the central Hexi Corridor. The East Jintanan Shan, West Jintanan Shan and Heli Shan are located in the northern part of the corridor; and the Yumu Shan in the southern part. Firstly, several representative areas were selected from these mountains to analyze the topographic characteristics, including the uniform valley spacing, local relief, and the outlet number. Secondly, a LEM for these areas was constructed using the Landlab platform, and the landscape evolution was simulated. With uniform valley spacing and other topographic characteristics as the criteria, we compared the realistic and simulated terrain for different model ages. Finally, based on the similarity of the simulated and realistic terrain, we estimated the timing of the initial uplift and the uplift rate of the four mountain ranges. The results are consistent with previous geological and geomorphological records from these youthful stage mountains that have not yet reached a steady state. Our findings demonstrate that LEMs combined with topographic characteristics are a reliable means of constraining the timing of the initial uplift and the uplift rate of the youthful stage mountain. Our approach can potentially be applied to other youthful stage mountains and it may become a valuable tool in tectonic geomorphology research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams J M, Gasparini N M, Hobley D E J, Tucker G E, Hutton E W H, Nudurupati S S, Istanbulluoglu E. 2017. The Landlab v1.0 Overland-Flow component: A Python tool for computing shallow-water flow across watersheds. Geosci Model Dev, 10: 1645–1663

    Article  Google Scholar 

  • Ahnert F. 1970. Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins. Am J Sci, 268: 243–263

    Article  Google Scholar 

  • Ahnert F. 1994. Equilibrium, scale and inheritance in geomorphology. Geomorphology, 11: 125–140

    Article  Google Scholar 

  • Berlin M M, Anderson R S. 2007. Modeling of knickpoint retreat on the Roan Plateau, western Colorado. J Geophys Res, 112: F03S06

    Google Scholar 

  • Bishop P. 2007. Long-term landscape evolution: Linking tectonics and surface processes. Earth Surf Process Landforms, 32: 329–365

    Article  Google Scholar 

  • Burbank D W, Pinter N. 1999. Landscape evolution: The interactions of tectonics and surface processes. Basin Res, 11: 1–6

    Article  Google Scholar 

  • Cai S, Geng H P, Zhen W S, Pan B T. 2020. Valley spacing character information and its influencing factors based on the Fourier transform (in Chinese). J Geo-inform Sci, 22: 399–409

    Google Scholar 

  • Chadwick O A, Roering J J, Heimsath A M, Levick S R, Asner G P, Khomo L. 2013. Shaping post-orogenic landscapes by climate and chemical weathering. Geology, 41: 1171–1174

    Article  Google Scholar 

  • Champel B, van B P, Mugnier J L, Leturmy P. 2002. Growth and lateral propagation of fault-related folds in the Siwaliks of western Nepal: Rates, mechanisms, and geomorphic signature. J Geophys Res, 107: 2

    Google Scholar 

  • Chen F, Yuan Y J, Wei W S, Zhang R B, Yu S L, Shang H, Zhang T W, Qin L, Wang H Q, Chen F H. 2013. Tree-ring-based annual precipitation reconstruction for the Hexi Corridor, NW China: Consequences for climate history on and beyond the mid-latitude Asian continent. Boreas, 42: 1008–1021

    Google Scholar 

  • Chen F, Zhu Y, Li J, Shi Q, Jin L, Wünemann B. 2001. Abrupt Holocene changes of the Asian monsoon at millennial- and centennial-scales: Evidence from lake sediment document in Minqin Basin, NW China. Chin Sci Bull, 46: 1942–1947

    Article  Google Scholar 

  • Chen L P, Geng H P, Zhang J, Zhao Q M, Pan B T. 2019. Spatial distribution of bedrock rebound value (Schmidt Hammer) across the Heihe River Basin and its implication (in Chinese). J Glaciol Geocryol, 41: 364–373

    Google Scholar 

  • Davis W M. 1899. The geographical cycle. Geogr J, 14: 481–504

    Article  Google Scholar 

  • Dettman D L, Fang X M, Garzione C N, Li J J. 2003. Uplift-driven climate change at 12 Ma: A long δ18O record from the NE margin of the Tibetan Plateau. Earth Planet Sci Lett, 214: 267–277

    Article  Google Scholar 

  • Dietrich W E, Bellugi D G, Sklar L S, Stock J D, Heimsath A M, Roering J J. 2003. Geomorphic transport laws for predicting landscape form and dynamics. In: Iverson R M, Wilcock P, eds. Geophysical Monograph Series: Prediction in Geomorphology. Washington DC: American Geophysical Union. 103–132

    Google Scholar 

  • Dietrich W E, Perron J T. 2006. The search for a topographic signature of life. Nature, 439: 411–418

    Article  Google Scholar 

  • Ding W F, Zhang P C, Wang Y F. 2008. Experimental study on runoff and sediment yield characteristics on purple soil slope (in Chinese). J Yangtze River Sci Res Inst, 25: 14–17

    Google Scholar 

  • Duan J, Liu Y J, Tang C J, Yang J, Chen L H. 2017. Responses of subsurface flow characteristics to natural rainfall in red soil slopes of different surface covers (in Chinese). J Hydr Eng, 48: 977–985

    Google Scholar 

  • Egholm D L, Knudsen M F, Sandiford M. 2013. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers. Nature, 498: 475–478

    Article  Google Scholar 

  • Fang X M, Zhao Z J, Li J J, Yan M D, Pan B T, Song C H, Dai S. 2005. Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift. Sci China Ser D-Earth Sci, 48: 1040–1051

    Article  Google Scholar 

  • Geng H P, Pan B T, Milledge D G, Huang B, Zhang G L. 2015. Quantifying sheet wash erosion rates in a mountainous semi-arid basin using environmental radionuclides and a stream power model. Earth Surf Process Landforms, 40: 1814–1826

    Article  Google Scholar 

  • Giachetta E, Refice A, Capolongo D, Gasparini N M, Pazzaglia F J. 2014. Orogen-scale drainage network evolution and response to erodibility changes: Insights from numerical experiments. Earth Surf Process Landforms, 39: 1259–1268

    Article  Google Scholar 

  • Gilbert G K. 1877. Report on the Geology of the Henry Mountains. Washington DC: Government Printing Office. 160

    Book  Google Scholar 

  • Haghipour N, Burg J P. 2014. Geomorphological analysis of the drainage system on the growing Makran accretionary wedge. Geomorphology, 209: 111–132

    Article  Google Scholar 

  • Harel M A, Mudd S M, Attal M. 2016. Global analysis of the stream power law parameters based on worldwide 10Be denudation rates. Geomorphology, 268: 184–196

    Article  Google Scholar 

  • Harkins N, Kirby E, Heimsath A, Robinson R, Reiser U. 2007. Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China. J Geophys Res, 112: F03S04

    Google Scholar 

  • Hetzel R, Tao M X, Niedermann S, Strecker M R, Ivy-Ochs S, Kubik P W, Gao B. 2004. Implications of the fault scaling law for the growth of topography: Mountain ranges in the broken foreland of north-east Tibet. Terra Nova, 16: 157–162

    Article  Google Scholar 

  • Hobley D E J, Adams J M, Nudurupati S S, Hutton E W H, Gasparini N M, Istanbulluoglu E, Tucker G E. 2017. Creative computing with Landlab: An open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. Earth Surf Dynam, 5: 21–46

    Article  Google Scholar 

  • Hu X F, Chen D B, Pan B T, Chen J J J, Zhang J, Chang J, Gong C S, Zhao Q M. 2019a. Sedimentary evolution of the foreland basin in the NE Tibetan Plateau and the growth of the Qilian Shan since 7 Ma. Geol Soc Am Bull, 131: 1744–1760

    Article  Google Scholar 

  • Hu X F, Pan B T, Kirby E, Li Q Y, Geng H P, Chen J F. 2010. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau. Chin Sci Bull, 55: 3205–3214

    Article  Google Scholar 

  • Hu X F, Wen Z L, Pan B T, Guo L Y, Cao X L. 2019b. Constraints on deformation kinematics across the Yumu Shan, NE Tibetan Plateau, based on fluvial terraces. Glob Planet Change, 182: 103023

    Article  Google Scholar 

  • Kirby E, Whipple K. 2001. Quantifying differential rock-uplift rates via stream profile analysis. Geology, 29: 415–418

    Article  Google Scholar 

  • Kirkby M J. 1971. Hillslope process-response models based on the continuity equation. Institute British Geographers Spec Publ, 3: 15–30

    Google Scholar 

  • Larsen I J, Montgomery D R. 2012. Landslide erosion coupled to tectonics and river incision. Nat Geosci, 5: 468–473

    Article  Google Scholar 

  • Li Y L, Yang J C. 2002. Tectonic geomorphology in the Hexi Corridor, north-west China. Basin Res, 10: 345–352

    Article  Google Scholar 

  • Lu H Y. 2018. Progress in geomorphology and future study: A brief review (in Chinese). Prog Geogr, 37: 8–15

    Google Scholar 

  • Ma Y Z, Fang X M, Li J J, Wu F L, Z J. 2005. The vegetation and climate change during Neocene and Early Quaternary in Jiuxi Basin, China. Sci China Ser D-Earth Sci, 48: 676–688

    Article  Google Scholar 

  • Ma Z F, Zhang H P, Wang Y Z, Tao Y L, Li X M. 2020. Inversion of Dadu River bedrock channels for the late cenozoic uplift history of the eastern Tibetan Plateau. Geophys Res Lett, 47: e86882

    Article  Google Scholar 

  • Mackin J H. 1948. Concept of the graded river. Geol Soc Am Bull, 59: 463–512

    Article  Google Scholar 

  • McGuire L A, Pelletier J D. 2016. Controls on valley spacing in landscapes subject to rapid base-level fall. Earth Surf Process Landforms, 41: 460–472

    Article  Google Scholar 

  • Palumbo L, Hetzel R, Tao M, Li X. 2010. Topographic and lithologic control on catchment-wide denudation rates derived from cosmogenic 10Be in two mountain ranges at the margin of NE Tibet. Geomorphology, 117: 130–142

    Article  Google Scholar 

  • Pan B T, Li Q, Hu X F, Geng H P, Gao H S. 2015. Bedrock channels response to differential rock uplift in eastern Qilian Mountain along the northeastern margin of the Tibetan Plateau. J Asian Earth Sci, 100: 1–19

    Article  Google Scholar 

  • Pazzaglia F J, Brandon M T. 2001. A fluvial record of long-term steady-state uplift and erosion across the Cascadia forearc high, Western Washington State. Am J Sci, 301: 385–431

    Article  Google Scholar 

  • Perron J T. 2017. Climate and the pace of erosional landscape evolution. Annu Rev Earth Planet Sci, 45: 561–591

    Article  Google Scholar 

  • Perron J T, Kirchner J W, Dietrich W E. 2008. Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes. J Geophys Res, 113: F04003

    Google Scholar 

  • Perron J T, Kirchner J W, Dietrich W E. 2009. Formation of evenly spaced ridges and valleys. Nature, 460: 502–505

    Article  Google Scholar 

  • Perron J T, Richardson P W, Ferrier K L, Lapôtre M. 2012. The root of branching river networks. Nature, 492: 100–103

    Article  Google Scholar 

  • Rantitsch G, Pischinger G, Kurz W. 2009. Stream profile analysis of the Koralm Range (Eastern Alps). Swiss J Geosci, 102: 31–41

    Article  Google Scholar 

  • Refice A, Giachetta E, Capolongo D. 2012. SIGNUM: A Matlab, TIN-based landscape evolution model. Comput Geosci, 45: 293–303

    Article  Google Scholar 

  • Roe G H, Montgomery D R, Hallet B. 2003. Orographic precipitation and the relief of mountain ranges. J Geophys Res, 108: 2315

    Google Scholar 

  • Roering J. 2012. Landslides limit mountain relief. Nat Geosci, 5: 446–447

    Article  Google Scholar 

  • Schumm S A. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull, 67: 597–646

    Article  Google Scholar 

  • Snow R S, Slingerland R L. 1987. Mathematical modeling of graded river profiles. J Geol, 95: 15–33

    Article  Google Scholar 

  • Stock J D, Montgomery D R. 1999. Geologic constraints on bedrock river incision using the stream power law. J Geophys Res, 104: 4983–4993

    Article  Google Scholar 

  • Strahler A N. 1952. Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull, 63: 1117–1141

    Article  Google Scholar 

  • Tang G A. 2014. Progress of DEM and digital terrain analysis in China (in Chinese). Acta Geogr Sin, 69: 1305–1325

    Google Scholar 

  • Tapponnier P, Xu Z Q, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J S. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294: 1671–1677

    Article  Google Scholar 

  • Theodoratos N, Seybold H, Kirchner J W. 2018. Scaling and similarity of a stream-power incision and linear diffusion landscape evolution model. Earth Surf Dynam, 6: 779–808

    Article  Google Scholar 

  • Tucker G E, Bras R L. 2000. A stochastic approach to modeling the role of rainfall variability in drainage basin evolution. Water Resour Res, 36: 1953–1964

    Article  Google Scholar 

  • Tucker G E, Lancaster S T, Gasparini N M, Bras R L, Rybarczyk S M. 2001. An object-oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks. Comput Geosci, 27: 959–973

    Article  Google Scholar 

  • Tucker G E, Slingerland R. 1997. Drainage basin responses to climate change. Water Resour Res, 33: 2031–2047

    Article  Google Scholar 

  • Tucker G E, Whipple K X. 2002. Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison. J Geophys Res, 107: 2179

    Google Scholar 

  • Vassilaki D I, Stamos A A. 2020. TanDEM-X DEM: Comparative performance review employing LIDAR data and DSMs. ISPRS J Photogramm Remote Sens, 160: 33–50

    Article  Google Scholar 

  • von Hagke C, Oncken O, Ortner H, Cederbom C E, Aichholzer S. 2014. Late Miocene to present deformation and erosion of the Central Alps—Evidence for steady state mountain building from thermokinematic data. Tectonophysics, 632: 250–260

    Article  Google Scholar 

  • Wang Y Z, Zhang H P, Zheng D W, Li C P, Xiao L, Li Y J. 2018a. River longitudinal profiles under transient state and the related tectonic signals (in Chinese). Quat Sci, 38: 220–231

    Google Scholar 

  • Wang Y Z, Zheng D W, Pang J Z, Zhang H P, Wang W T, Yu J X, Zhang Z Q, Zheng W J, Zhang P Z, Li Y J. 2018b. Using slope-area and apatite fission track analysis to decipher the rock uplift pattern of the Yumu Shan: New insights into the growth of the NE Tibetan Plateau. Geomorphology, 308: 118–128

    Article  Google Scholar 

  • Wen Z L, Hu X F, Pan B T, Lu Y Y, Cao X L, Zhang J. 2015. Deformation analysis of fluvial terrace in Jinta nanshan Mountains, Gansu Province (in Chinese). Geol Rev, 65: 1032–1046

    Google Scholar 

  • Wen Z L, Hu X F, Pan B T, Zhang J, Cao X L. 2016. The fluvial gravels features of Jintananshan Mountains and its implication on the landform evolution in the NE Tibetan Plateau (in Chinese). Quat Sci, 36: 907–916

    Google Scholar 

  • Whipple K X. 2001. Fluvial landscape response time: How plausible is steady-state denudation? Am J Sci, 301: 313–325

    Article  Google Scholar 

  • Whipple K X. 2009. Landscape texture set to scale. Nature, 460: 468–469

    Article  Google Scholar 

  • Whipple K X, Hancock G S, Anderson R S. 2000. River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation. Geol Soc Am Bull, 112: 490–503

    Article  Google Scholar 

  • Whipple K X, Kirby E, Brocklehurst S H. 1999. Geomorphic limits to climate-induced increases in topographic relief. Nature, 401: 39–43

    Article  Google Scholar 

  • Whittaker A C, Boulton S J. 2012. Tectonic and climatic controls on knickpoint retreat rates and landscape response times. J Geophys Res, 117: F02024

    Google Scholar 

  • Willett S D, Brandon M T. 2002. On steady states in mountain belts. Geology, 30: 175–178

    Article  Google Scholar 

  • Willett S D, Slingerland R, Hovius N. 2001. Uplift, shortening, and steady state topography in active mountain belts. Am J Sci, 301: 455–485

    Article  Google Scholar 

  • Willgoose G. 2005. Mathematical modeling of whole landscape evolution. Annu Rev Earth Planet Sci, 33: 443–459

    Article  Google Scholar 

  • Xiong L Y, Tang G A, Li F Y, Yuan B Y, Lu Z C. 2014. Modeling the evolution of loess-covered landforms in the Loess Plateau of China using a DEM of underground bedrock surface. Geomorphology, 209: 18–26

    Article  Google Scholar 

  • Xiong L Y, Tang G A, Zhu A X, Yuan B Y, Lu B Y, Dang T M. 2017. Paleotopographic controls on modern gully evolution in the loess landforms of China. Sci China Earth Sci, 60: 438–451

    Article  Google Scholar 

  • Yang F, Lu H, Yang K, He J, Wang W, Wright J S, Li C W, Han M L, Li Y S. 2017. Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China. Hydrol Earth Syst Sci, 21: 5805–5821

    Article  Google Scholar 

  • Yang R. 2017. A brief review of several models of topographic evolution (in Chinese). Seismol Geol, 39: 1173–1184

    Google Scholar 

  • Yang R, Suhail H A, Gourbet L, Willett S D, Fellin M G, Lin X B, Gong J F, Wei X C, Maden C, Jiao R R H, Chen H L. 2020. Early Pleistocene drainage pattern changes in Eastern Tibet: Constraints from provenance analysis, thermochronometry, and numerical modeling. Earth Planet Sci Lett, 531: 115955

    Article  Google Scholar 

  • Yang R, Willett S D, Goren L. 2015. In situ low-relief landscape formation as a result of river network disruption. Nature, 520: 526–529

    Article  Google Scholar 

  • Yuan D Y, Ge W P, Chen Z W, Li C Y, Wang Z C, Zhang H P, Zhang P Z, Zheng D W, Zheng W J, Craddock W H, Dayem K E, Duvall A R, Hough B G, Lease R O, Champagnac J D, Burbank D W, Clark M K, Farley K A, Garzione C N, Kirby E, Molnar P, Roe G H. 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies. Tectonics, 32: 1358–1370

    Article  Google Scholar 

  • Zhang B, He W G, Pang W, Wu Z, Shao Y X, Yuan D Y. 2016. Geological and geomorphic expressions of late Quaternary strik-slip activity on Jinta Nanshan fault in northern edge of Qing-Zang block (in Chinese). Seismol Geol, 38: 1–21

    Google Scholar 

  • Zhang H P, Zhang P Z, Fan Q C. 2011. Initiation and recession of the fluvial knickpoints: A case study from the Yalu River-Wangtian’e volcanic region, northeastern China. Sci China Earth Sci, 54: 1746–1753

    Article  Google Scholar 

  • Zhang J, Hu X F, Geng H P, Chen D B, Pan B T. 2016. Drainage evolution history in Jiudong Basin since the Pleistocene inferred from heavy mineral characteristics in cores and modern fluvial deposits (in Chinese). Sci Geogr Sin, 36: 1595–1604

    Google Scholar 

  • Zheng W J, Zhang P Z, Ge W P, Molnar P, Zhang H P, Yuan D Y, Liu J H. 2013a. Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau. Tectonics, 32: 271–293

    Article  Google Scholar 

  • Zheng W J, Zhang H P, Zhang P Z, Molnar P, Liu X W, Yuan D Y. 2013b. Late Quaternary slip rates of the thrust faults in western Hexi Corridor (Northern Qilian Shan, China) and their implications for northeastward growth of the Tibetan Plateau. Geosphere, 9: 342–354

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank the developers of the Landlab Platform and the module developers of the Earth Surface Processes Modeling Community. The Tan DEM-X DEM data was provided by the German Aerospace Center (DLR). The China Meteorological Forcing Dataset (CMFD) was provided by the Cold and Arid Region Scientific Data Center of the Chinese Academy of Sciences. We are grateful to the anonymous reviewers for their constructive comments and suggestions which have significantly improved the quality of the paper, and Dr. Jan Bloemendal for revising the language. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41730637 & 41571003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haopeng Geng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, B., Cai, S. & Geng, H. Numerical simulation of landscape evolution and mountain uplift history constrain—A case study from the youthful stage mountains around the central Hexi Corridor, NE Tibetan Plateau. Sci. China Earth Sci. 64, 412–424 (2021). https://doi.org/10.1007/s11430-020-9716-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9716-6

Keywords

Navigation