Skip to main content
Log in

A review of the microseismic focal mechanism research

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Reservoir reconstructions implemented in unconventional oil and gas exploration usually adapt hydraulic fracturing techniques to inject high-pressure fluid into the reservoir and change its pore-fracture connection structure to enhance production. Hydraulic fracturing changes the reservoir stress and causes the rocks to crack, thus generating microseismic events. One important component of microseismic research is the source mechanism inversion. Through the research on the microseismic focal mechanism, information on the source mechanisms and in-situ stress status variations can be quantitatively revealed to effectively optimize the reservoir reconstruction design for increasing production. This paper reviews the recent progress in hydraulic fracturing induced microseismic focal mechanism research. We summarize their main principles and provide a detailed introduction of the research advances in source modeling, microseismic data synthesis, and focal mechanism inversion. We also discuss the challenges and limitations in the current microseismic focal mechanism research and propose prospects for future research ideas and directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki K, Richards P G. 2002. Quantitative Seismology. 2nd ed. Sausalito: University Science Books

    Google Scholar 

  • Baig A, Urbancic T. 2010. Microseismic moment tensors: A path to understanding frac growth. Lead Edge, 29: 320–324

    Google Scholar 

  • Baysal E, Kosloff D D, Sherwood J W C. 1983. Reverse time migration. Geophysics, 48: 1514–1524

    Google Scholar 

  • Becker M W, Ciervo C, Cole M, Coleman T, Mondanos M. 2017. Fracture hydromechanical response measured by fiber optic distributed acoustic sensing at milliHertz frequencies. Geophys Res Lett, 44: 7295–7302

    Google Scholar 

  • Bischoff M, Cete A, Fritschen R, Meier T. 2010. Coal mining induced seismicity in the Ruhr area, Germany. Pure Appl Geophys, 167: 63–75

    Google Scholar 

  • Bohnhoff M, Baisch S, Harjes H P. 2004. Fault mechanisms of induced seismicity at the superdeep German continental deep drilling program (KTB) borehole and their relation to fault structure and stress field. J Geophys Res, 109: 1–3

    Google Scholar 

  • Bohnhoff M, Dresen G, Ellsworth W L, Ito H. 2009. Passive Seismic Monitoring of Natural and Induced Earthquakes: Case Studies, Future Directions and Socio-Economic Relevance. In: Cloetingh S, Negendank J, eds. New Frontiers in Integrated Solid Earth Sciences. International Year of Planet Earth. Dordrecht: Springer. 261–285

    Google Scholar 

  • Bohnhoff M, Rische M, Meier T, Becker D, Stavrakakis G, Harjes H P. 2006. Microseismic activity in the Hellenic Volcanic Arc, Greece, with emphasis on the seismotectonic setting of the Santorini-Amorgos zone. Tectonophysics, 423: 17–33

    Google Scholar 

  • Bouchon M. 1979. Discrete wave number representation of elastic wave fields in three-space dimensions. J Geophys Res, 84: 3609–3614

    Google Scholar 

  • Bouchon M. 2003. A review of the discrete wavenumber method. Pure Appl Geophys, 160: 445–465

    Google Scholar 

  • Brodsky E E, Lajoie L J. 2013. Anthropogenic seismicity rates and operational parameters at the salton sea geothermal field. Science, 341: 543–546

    Google Scholar 

  • Burridge R, Knopoff L. 1964. Body force equivalents for seismic dislocations. Bull Seismol Soc Am, 54: 1875–1888

    Google Scholar 

  • Červený V, Popov M M, Pšenčík I. 1982. Computation of wave fields in inhomogeneous media—Gaussian beam approach. Geophys J Int, 70: 109–128

    Google Scholar 

  • Červený V, Soares J E P. 1992. Fresnel volume ray tracing. Geophysics, 57: 902–915

    Google Scholar 

  • Cesca S, Buforn E, Dahm T. 2006. Amplitude spectra moment tensor inversion of shallow earthquakes in Spain. Geophys J Int, 166: 839–854

    Google Scholar 

  • Cesca S, Grigoli F. 2015. Full waveform seismological advances for microseismic monitoring. Adv Geophys, 56: 169–228

    Google Scholar 

  • Cesca S, Şen A T, Dahm T. 2014. Seismicity monitoring by cluster analysis of moment tensors. Geophys J Int, 196: 1813–1826

    Google Scholar 

  • Chang X, Wang Y. 2019. Research on Microseismic Inversion (in Chinese). Beijing: Science China Press

    Google Scholar 

  • Dahm T, Manthei G, Eisenblätter J. 1999. Automated moment tensor inversion to estimate source mechanisms of hydraulically induced microseismicity in salt rock. Tectonophysics, 306: 1–17

    Google Scholar 

  • Deng F, Liu C. 2009. 3-D rapid ray-tracing and Gaussian ray-beam forward simulation (in Chinese). Oil Geophys Prospect, 44: 158–165

    Google Scholar 

  • Dufumier H, Rivera L. 1997. On the resolution of the isotropic component in moment tensor inversion. Geophys J Int, 131: 595–606

    Google Scholar 

  • Eisner L, Williams-Stroud S, Hill A, Duncan P, Thornton M. 2010. Beyond the dots in the box: Microseismicity-constrained fracture models for reservoir simulation. Lead Edge, 29: 326–333

    Google Scholar 

  • Ellsworth W L. 2013. Injection-induced earthquakes. Science, 341: 1225942

    Google Scholar 

  • Fojtíková L, Vavryčuk V, Cipciar A, Madarás J. 2010. Focal mechanisms of micro-earthquakes in the Dobrá Voda seismoactive area in the Malé Karpaty Mts. (Little Carpathians), Slovakia. Tectonophysics, 492: 213–229

    Google Scholar 

  • Frohlich C. 1994. Earthquakes with non-double-couple mechanisms. Science, 264: 804–809

    Google Scholar 

  • Fuchs K, Müller G. 1971. Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys J Int, 23: 417–433

    Google Scholar 

  • Gajewski D, Pšenčik I. 1990. Vertical seismic profile synthetics by dynamic ray tracing in laterally varying layered anisotropic structures. J Geophys Res, 95: 11301–11315

    Google Scholar 

  • Gilbert F. 1971. Excitation of the normal modes of the Earth by earthquake sources. Geophys J Int, 22: 223–226

    Google Scholar 

  • Godano M, Bardainne T, Regnier M, Deschamps A. 2011. Moment-tensor determination by nonlinear inversion of amplitudes. Bull Seismol Soc Am, 101: 366–378

    Google Scholar 

  • Grechka V. 2020. Moment tensors of double-couple microseismic sources in anisotropic formations. Geophysics, 85: KS1–KS11

    Google Scholar 

  • Hao J, Ji C, Yao Z. 2017. Slip history of the 2016 MW7.0 Kumamoto earthquake: Intraplate rupture in complex tectonic environment. Geophys Res Lett, 44: 743–750

    Google Scholar 

  • Hao J L, Yao Z X. 2012. Determination of regional earthquake source parameters in wavelet domain. Sci China Earth Sci, 55: 296–305

    Google Scholar 

  • Hardebeck J L, Shearer P M. 2002. A New method for determining firstmotion focal mechanisms. Bull Seismol Soc Am, 92: 2264–2276

    Google Scholar 

  • Hardebeck J L, Shearer P M. 2003. Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bull Seismol Soc Am, 93: 2434–2444

    Google Scholar 

  • He Y M, Wang W, Yao Z. 2003. Static deformation due to shear and tensile faults in a layered half-space. Bull Seismol Soc Am, 93: 2253–2263

    Google Scholar 

  • Helmberger D V. 1983. Theory and application of synthetic seismograms. In: Kanamori H, Boschi E, eds. Earthquakes: Observation Theory and Interpretation. Amsterdam: Elsevier. 174–222

    Google Scholar 

  • Helmberger D V, Engen G R. 1980. Modeling the long-period body waves from shallow earthquakes at regional ranges. Bull Seismol Soc Am, 70: 1699–1714

    Google Scholar 

  • Hughes J D. 2013. A reality check on the shale revolution. Nature, 494: 307–308

    Google Scholar 

  • Jechumtálová Z, Eisner L. 2008. Seismic source mechanism inversion from a linear array of receivers reveals non-double-couple seismic events induced by hydraulic fracturing in sedimentary formation. Tectonophysics, 460: 124–133

    Google Scholar 

  • Jechumtálová Z, Šílený J. 2005. Amplitude ratios for complete moment tensor retrieval. Geophys Res Lett, 32: L22303

    Google Scholar 

  • Ji C, Helmberger D V, Wald D J, Ma K F. 2003. Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake. J Geophys Res, 108: 2412

    Google Scholar 

  • Jiang F, Yang S, Cheng Y, Zhang X, Mao Z, Xu F. 2006. A study on microseismic monitoring of rock burst in coal mine (in Chinese). Chin J Geophys, 49: 1511–1516

    Google Scholar 

  • Johnston J E, Christensen N I. 1995. Seismic anisotropy of shales. J Geophys Res, 100: 5991–6003

    Google Scholar 

  • Jost M L, Herrmann R B. 1989. A student’s guide to and review of moment tensors. Seismol Res Lett, 60: 37–57

    Google Scholar 

  • Julian B R, Gubbins D. 1977. Three-dimensional seismic ray tracing. J Geophys, 43: 95–113

    Google Scholar 

  • Julian B R, Miller A D, Foulger G R. 1998. Non-double-couple earth-quakes 1. Theory. Rev Geophys, 36: 525–549

    Google Scholar 

  • Karrenbach M, Cole S, Ridge A, Boone K, Kahn D, Rich J, Silver K, Langton D. 2018. Fiber-optic distributed acoustic sensing of microseismicity, strain and temperature during hydraulic fracturing. Geophysics, 84: D11–D23

    Google Scholar 

  • Kelly K R, Ward R W, Treitel S, Alford R M. 1976. Synthetic seismograms: A finite-difference approach. Geophysics, 41: 2–27

    Google Scholar 

  • Kennett B L N. 1980. Seismic waves in a stratified half space—II. Theoretical seismograms. Geophys J Int, 61: 1–10

    Google Scholar 

  • Knopoff L, Randall M J. 1970. The compensated linear-vector dipole: A possible mechanism for deep earthquakes. J Geophys Res, 75: 4957–4963

    Google Scholar 

  • Kuang W, Zoback M, Zhang J. 2017. Estimating geomechanical parameters from microseismic plane focal mechanisms recorded during multistage hydraulic fracturing. Geophysics, 82: KS1–KS11

    Google Scholar 

  • Kühn D, Vavryčuk V. 2013. Determination of full moment tensors of microseismic events in a very heterogeneous mining environment. Tectonophysics, 589: 33–43

    Google Scholar 

  • Li H, Chang X, Yao Z, Wang Y. 2018. General dislocation model based microseismic focal mechanism inversion in frequency domain. Copenhagen: 80th EAGE Conference and Exhibition. 1–5

  • Li H, Liu X, Chang X, Wu R, Liu J. 2019. Impact of shale anisotropy on seismic wavefield. Energies, 12: 4412

    Google Scholar 

  • Li H, Yao Z. 2018. Microseismic focal mechanism inversion in frequency domain based on general dislocation point model (in Chinese). Chin J Geophys, 61: 905–916

    Google Scholar 

  • Li J, Sadi Kuleli H, Zhang H, Nafi Toksöz M. 2011a. Focal mechanism determination of induced microearthquakes in an oil field using full waveforms from shallow and deep seismic networks. Geophysics, 76: WC87–WC101

    Google Scholar 

  • Li J, Zhang H, Sadi Kuleli H, Nafi Toksöz M. 2011b. Focal mechanism determination using high-frequency waveform matching and its application to small magnitude induced earthquakes. Geophys J Int, 184: 1261–1274

    Google Scholar 

  • Li L, Tan J, Wood D A, Zhao Z, Becker D, Lyu Q, Shu B, Chen H. 2019. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs. Fuel, 242: 195–210

    Google Scholar 

  • Li S, Yan Z, Xue J, Wang Y, Liao W. 2003. First microearthquake swarm activity since storage in Three Gorges reservoir (in Chinese). J Geod Geodyn, 23: 75–79

    Google Scholar 

  • Li Y, Li Y, Wang B, Chen Z, Nie D. 2016. The status quo review and suggested policies for shale gas development in China. Renew Sustain Energy Rev, 59: 420–428

    Google Scholar 

  • Li Z, Chang X, Yao Z, Wang Y. 2019. Fracture monitoring and reservoir evaluation by micro-seismic method (in Chinese). Chin J Geophys, 62: 707–719

    Google Scholar 

  • Maxwell S. 2010. Microseismic: Growth born from success. Lead Edge, 29: 338–343

    Google Scholar 

  • Maxwell S. 2011. Microseismic hydraulic fracture imaging: The path toward optimizing shale gas production. Lead Edge, 30: 340–346

    Google Scholar 

  • Maxwell S. 2014. Microseismic imaging of hydraulic fracturing: Improved engineering of unconventional shale reservoirs. Society of Exploration Geophysicists, doi: https://doi.org/10.1190/1.9781560803164

  • Maxwell S C. 2009. Microseismic Location Uncertainty. CSEG Rec, 34: 41–46

    Google Scholar 

  • McGarr A. 2014. Maximum magnitude earthquakes induced by fluid injection. J Geophys Res-Solid Earth, 119: 1008–1019

    Google Scholar 

  • Michael J E, Kenneth G N. 2013. Reservoir Stimulation. 3rd ed. New York: Wiley. 18

    Google Scholar 

  • Miller A D, Foulger G R, Julian B R. 1998. Non-double-couple earthquakes 2. Observations. Rev Geophys, 36: 551–568

    Google Scholar 

  • Minson S E, Dreger D S, Bürgmann R, Kanamori H, Larson K M. 2007. Seismically and geodetically determined nondouble-couple source mechanisms from the 2000 Miyakejima volcanic earthquake swarm. J Geophys Res, 112: 1–20

    Google Scholar 

  • Moczo P, Kristek J, Gális M. 2014. The Finite-difference Modelling of Earthquake Motions: Waves and Ruptures. Cambridge: Cambridge University Press

    Google Scholar 

  • Moser T J. 1991. Shortest path calculation of seismic rays. Geophysics, 56: 59–67

    Google Scholar 

  • Mueller M. 2013. Meeting the challenge of uncertainty in surface microseismic monitoring. First Break, 31: 89–95

    Google Scholar 

  • Müller G. 1985. The reflectivity method: A tutorial. J Geophys, 58: 153–174

    Google Scholar 

  • Nakamura M. 2002. Determination of focal mechanism solution using initial motion polarity of P and S waves. Phys Earth Planet Inter, 130: 17–29

    Google Scholar 

  • do Nascimento A F, Lunn R J, Cowie P A. 2005. Modeling the heterogeneous hydraulic properties of faults using constraints from reservoir-induced seismicity. J Geophys Res, 110: 1–7

    Google Scholar 

  • Nolen-Hoeksema R C, Ruff L J. 2001. Moment tensor inversion of microseisms from the B-sand propped hydrofracture, M-site, Colorado. Tectonophysics, 336: 163–181

    Google Scholar 

  • Ou G B. 2008. Seismological studies for tensile faults. Terr Atmos Ocean Sci, 19: 463–471

    Google Scholar 

  • Oye V, Roth M. 2003. Automated seismic event location for hydrocarbon reservoirs. Comput Geosci, 29: 851–863

    Google Scholar 

  • Pearson C. 1981. The relationship between microseismicity and high pore pressures during hydraulic stimulation experiments in low permeability granitic rocks. J Geophys Res, 86: 7855–7864

    Google Scholar 

  • Pesicek J D, Cieślik K, Lambert M A, Carrillo P, Birkelo B. 2016. Dense surface seismic data confirm non-double-couple source mechanisms induced by hydraulic fracturing. Geophysics, 81: KS207–KS217

    Google Scholar 

  • Phillips W S, Fairbanks T D, Rutledge J T, Anderson D W. 1998. Induced microearthquake patterns and oil-producing fracture systems in the Austin chalk. Tectonophysics, 289: 153–169

    Google Scholar 

  • Reid H F. 1910. The california earthquake of April 18, 1906. Rep state Earthq Investig Comm, 2: 16–18

    Google Scholar 

  • Rutledge J T, Phillips W S. 2003. Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas. Geophysics, 68: 441–452

    Google Scholar 

  • Shi P, Angus D, Nowacki A, Yuan S, Wang Y. 2018. Microseismic full waveform modeling in anisotropic media with moment tensor implementation. Surv Geophys, 39: 567–611

    Google Scholar 

  • Shimizu H, Ueki S, Koyama J. 1987. A tensile—Shear crack model for the mechanism of volcanic earthquakes. Tectonophysics, 144: 287–300

    Google Scholar 

  • Šílený J. 2012. Shear-tensile/implosion source model vs. moment tensor — Benefit in single-azimuth monitoring, cotton valley set-up. Copenhagen: 74th European Association of Geoscientists and Engineers Conference and Exhibition. 1977–1981

  • Šílený J, Hill D P, Eisner L, Cornet F H. 2009. Non-double-couple mechanisms of microearthquakes induced by hydraulic fracturing. J Geophys Res, 114: B08307

    Google Scholar 

  • Šílený J, Jechumtálová Z, Dorbath C. 2014. Small scale earthquake mechanisms induced by fluid injection at the enhanced geothermal system reservoir soultz (Alsace) in 2003 using alternative source models. Pure Appl Geophys, 171: 2783–2804

    Google Scholar 

  • Soeder D J. 2018. The successful development of gas and oil resources from shales in North America. J Pet Sci Eng, 163: 399–420

    Google Scholar 

  • Song F, Toksöz M N. 2011. Full-waveform based complete moment tensor inversion and source parameter estimation from downhole microseismic data for hydrofracture monitoring. Geophysics, 76: WC103–WC116

    Google Scholar 

  • Song F, Warpinski N R, Toksöz M N. 2014. Full-waveform based microseismic source mechanism studies in the Barnett Shale: Linking microseismicity to reservoir geomechanics. Geophysics, 79: KS13–KS30

    Google Scholar 

  • Song W, Yang X. 2012. The multi-wave field forward simulation of microseismic based on ray tracing (in Chinese). Prog Geophys, 27: 1501–1508

    Google Scholar 

  • Staněk F, Eisner L, Jan Moser T. 2014. Stability of source mechanisms inverted from P-wave amplitude microseismic monitoring data acquired at the surface. Geophys Prospect, 62: 475–490

    Google Scholar 

  • Steketee J A. 1958. On Volterra’s dislocations in a semi-infinite elastic medium. Can J Phys, 36: 192–205

    Google Scholar 

  • Tan Y, Hu J, Zhang H, Chen Y, Qian J, Wang Q, Zha H, Tang P, Nie Z. 2020. Hydraulic fracturing induced seismicity in the Southern Sichuan Basin due to fluid diffusion inferred from seismic and injection data analysis. Geophys Res Lett, 47: e84885

    Google Scholar 

  • Tan Y, Hu J, Zhang H, Miao Y, Zhang H, Liao L, Qian J. 2019. Source mechanism determination for hydraulic fracturing induced seismicity using full-waveform matching (in Chinese). Chin J Geophys, 62: 4417–4436

    Google Scholar 

  • Tang J, Li C, Liu Y, Chen X. 2020. Moment tensor inversion method from borehole data constrained by shear-tensile source model (in Chinese). Oil Geophys Prospect, 55: 126–135

    Google Scholar 

  • Tang J, Wang H, Wen L, Zhang W. 2018. Focal mechanism of shear-tensile microseismic and amplitude distribution characteristics (in Chinese). Oil Geophys Prospect, 53: 502–510

    Google Scholar 

  • Tang Y, Tang X, Wang G, Zhang Q. 2011. Summary of hydraulic fracturing technology in shale gas development (in Chinese). Geol Bull China, 30: 393–399

    Google Scholar 

  • Tibi R, Vermilye J, Lacazette A, Rabak I, Luh P, Sicking C, Geiser P. 2013. Assessment of hydraulic fracture complexity and stress field variability in an unconventional reservoir from composite moment tensor of double-couple microseismic event. SEG Technical Program Expanded Abstracts 2013. 2183–2187

  • Trifunac M D. 1974. A three-dimensional dislocation model for the San Fernando, California, earthquake of February 9, 1971. Bull Seismol Soc Am, 64: 149–172

    Google Scholar 

  • Tromp J, Komatitsch D, Liu Q. 2008. Spectral-element and adjoint methods in seismology. Commun Comput Phys, 3: 1–32

    Google Scholar 

  • Um J, Thurber C. 1987. A fast algorithm for two-point seismic ray tracing. Bull Seismol Soc Am, 77: 972–986

    Google Scholar 

  • Usher P J, Angus D A, Verdon J P. 2013. Influence of a velocity model and source frequency on microseismic waveforms: Some implications for microseismic locations. Geophys Prospect, 61: 334–345

    Google Scholar 

  • Vavryčuk V. 2001. Inversion for parameters of tensile earthquakes. J Geophys Res, 106: 16339–16355

    Google Scholar 

  • Vavryčuk V. 2005. Focal mechanisms in anisotropic media. Geophys J Int, 161: 334–346

    Google Scholar 

  • Vavryčuk V. 2015. Moment tensor decompositions revisited. J Seismol, 19: 231–252

    Google Scholar 

  • Vavryčuk V. 2011. Tensile earthquakes: Theory, modeling, and inversion. J Geophys Res, 116: B12320

    Google Scholar 

  • Vavryčuk V, Bohnhoff M, Jechumtálová Z, Kolář P, Šílený J. 2008. Non-double-couple mechanisms of microearthquakes induced during the 2000 injection experiment at the KTB site, Germany: A result of tensile faulting or anisotropy of a rock? Tectonophysics, 456: 74–93

    Google Scholar 

  • Verdon J. 2011. Microseismic monitoring and geomechanical modeling of CO2 storage in subsurface reservoirs. Geophysics, 76: Z102–Z103

    Google Scholar 

  • Vinje V, Iversen E, Gjøystdal H. 1993. Traveltime and amplitude estimation using wavefront construction. Geophysics, 58: 1157–1166

    Google Scholar 

  • Virieux J. 1986. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 51: 889–901

    Google Scholar 

  • Virieux J. 1984. SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 49: 1933–1942

    Google Scholar 

  • Virieux J, Operto S. 2009. An overview of full-waveform inversion in exploration geophysics. Geophysics, 74: WCC1–WCC26

    Google Scholar 

  • Wang H, Chang X. 2000. 3-D ray tracing method based on graphic structure (in Chinese). Chin J Geophys, 43: 535–541

    Google Scholar 

  • Wang H, Li M, Shang X. 2016. Current developments on micro-seismic data processing. J Nat Gas Sci Eng, 32: 521–537

    Google Scholar 

  • Warpinski N. 2009. Microseismic monitoring: Inside and out. J Pet Tech, 61: 80–85

    Google Scholar 

  • Warpinski N R, Branagan P T, Peterson R E, Wolhart S L, Uhl J E. 1998. Mapping hydraulic fracture growth and geometry using microseismic events detected by a wireline retrievable accelerometer array. SPE Gas Technology Symposium. 335–346

  • Warpinski N R, Du J, Zimmer U. 2012. Measurements of hydraulic-fracture-induced seismicity in gas shales. SPE Prod Oper, 27: 240–252

    Google Scholar 

  • Willacy C, van Dedem E, Minisini S, Li J, Blokland J W, Das I, Droujinine A. 2019. Full-waveform event location and moment tensor inversion for induced seismicity. Geophysics, 84: KS39–KS57

    Google Scholar 

  • Wong J, Manning P M, Lejia H, John B. 2011. Synthetic microseismic datasets. CSEG Rec, 36: 31–38

    Google Scholar 

  • Yang X, Zhu H, Cui S, Wang Y, Pang R, Li H. 2015. Application of P-wave first-motion focal mechanism solutions in microseismic monitoring for hydraulic fracturing (in Chinese). Geophys Prospect Pet, 54: 43–50

    Google Scholar 

  • Yang Y, Wang Z, Xu T, Yang C. 2018. A high-efficiency ray-tracing method for 3-D TTI media (in Chinese). Chin J Geophys, 61: 1421–1433

    Google Scholar 

  • Yao Z, Harkrider D G. 1983. A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms. Bull Seismol Soc Am, 73: 1685–1699

    Google Scholar 

  • Yao Z, Zheng T, Cao B, Wang K. 1991. A method for determining the source process of moderate to strong earthquakes using P-wave data (in Chinese). Prog Geophys, 6: 6–36

    Google Scholar 

  • Yin X, Wang X, Yang J. 2016. A new forward modeling method with space-time Gaussian beam (in Chinese). Oil Geophys Prospect, 51: 106–114

    Google Scholar 

  • Yue H, Zhang Y, Ge Z, Wang T, Zhao L. 2020. Resolving rupture processes of great earthquakes: Reviews and perspective from fast response to joint inversion. Sci China Earth Sci, 63: 492–511

    Google Scholar 

  • Zeng X, Zhang H, Zhang X, Wang H, Zhang Y, Liu Q. 2014. Surface microseismic monitoring of hydraulic fracturing of a shale-gas reservoir using short-period and broadband seismic sensors. Seismol Res Lett, 85: 668–677

    Google Scholar 

  • Zhang P, Liu H. 2000. The situation and progress of ray tracing method research (in Chinese). Prog Geophys, 15: 36–45

    Google Scholar 

  • Zhang X, Zhang J. 2016. Microseismic search engine for real-time estimation of source location and focal mechanism. Geophysics, 81: KS169–KS182

    Google Scholar 

  • Zhang Y, Liu H, Li H, Wang W, Shen C. 2017. Reservoir fracturing volume estimation with micro-seismic monitoring data (in Chinese). Oil Geophys Prospect, 52: 309–314

    Google Scholar 

  • Zienkiewicz O C, Taylor R L, Nithiarasu P, Zhu J Z. 1977. The Finite Element Method. London: McGraw-Hill

    Google Scholar 

  • Zou C, Yang Z, Sun S, Zhao Q, Bai W, Liu H, Pan S, Wu S, Yuan Y. 2020. “Exploring petroleum inside source kitchen”: Shale oil and gas in Sichuan Basin. Sci China Earth Sci, 63: 934–953

    Google Scholar 

Download references

Acknowledgements

We thank all the researchers who contributed to the microseismic focal mechanism studies. We especially thank Prof. Zhenxing YAO for his guidance and help in the research work, and BGP INC. and Changqing Oilfield Company, China National Petroleum Corporation for providing us with microseismic field data. We also thank the scientific editors and two anonymous reviewers for their constructive comments and suggestions to help improve this paper. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41974156 and 41804050) and the National Science and Technology Major Project (Grant No. 2017ZX05049002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chang, X. A review of the microseismic focal mechanism research. Sci. China Earth Sci. 64, 351–363 (2021). https://doi.org/10.1007/s11430-020-9658-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9658-7

Keywords

Navigation