Skip to main content
Log in

Application of deep learning in ecological resource research: Theories, methods, and challenges

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Ecological resources are an important material foundation for the survival, development, and self-realization of human beings. In-depth and comprehensive research and understanding of ecological resources are beneficial for the sustainable development of human society. Advances in observation technology have improved the ability to acquire long-term, cross-scale, massive, heterogeneous, and multi-source data. Ecological resource research is entering a new era driven by big data. Traditional statistical learning and machine learning algorithms have problems with saturation in dealing with big data. Deep learning is a method for automatically extracting complex high-dimensional nonlinear features, which is increasingly used for scientific and industrial data processing because of its ability to avoid saturation with big data. To promote the application of deep learning in the field of ecological resource research, here, we first introduce the relationship between deep learning theory and research on ecological resources, common tools, and datasets. Second, applications of deep learning in classification and recognition, detection and localization, semantic segmentation, instance segmentation, and graph neural network in typical spatial discrete data are presented through three cases: species classification, crop breeding, and vegetation mapping. Finally, challenges and opportunities for the application of deep learning in ecological resource research in the era of big data are summarized by considering the characteristics of ecological resource data and the development status of deep learning. It is anticipated that the cooperation and training of cross-disciplinary talents may promote the standardization and sharing of ecological resource data, improve the universality and interpretability of algorithms, and enrich applications with the development of hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aich S, Stavness I. 2017. Leaf counting with deep convolutional and deconvolutional networks. Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). 1: 22–29

    Google Scholar 

  • Ba J, Caruana R. 2014. Do deep nets really need to be deep? Adv Neural Information Processing Systems, 1: 2654–2662

    Google Scholar 

  • Barré P, Stöver B C, Müller K F, Steinhage V. 2017. LeafNet: A computer vision system for automatic plant species identification. Ecol Inf, 40: 50–56

    Google Scholar 

  • Battaglia P W, Hamrick J B, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M, Tacchetti A, Raposo D, Santoro A, Faulkner R. 2018, Relational inductive biases, deep learning, and graph networks. arXiv: 1806.01261.

    Google Scholar 

  • Baweja H S, Parhar T, Mirbod O, Nuske S. 2018. StalkNet: A deep learning pipeline for high-throughput measurement of plant stalk count and stalk width. In: Hutter M, Siegwart R, eds. Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol 5. Cham: Springer. 1: 271–284

    Google Scholar 

  • Bengio Y. 2012. Deep Learning of representations for unsupervised and transfer learning. Proceedings of ICML Workshop on Unsupervised and Transfer Learning. 1: 17–36

    Google Scholar 

  • Bengio Y, Courville A, Vincent P. 2013. Representation learning: A review and new perspectives. IEEE Trans Pattern Anal Mach Intell, 35: 1798–1828

    Google Scholar 

  • Black H C, Nolan J R, Connolly M J, Nolan-Haley J M. 1990, Black’s Law Dictionary: Definitions of the Terms and Phrases of American and English Jurisprudence, Ancient and Modern. Minnesota: West Publishing Company

    Google Scholar 

  • Boureau Y L, Bach F, LeCun Y, Ponce J. 2010a. Learning mid-level features for recognition. San Francisco: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1: 2559–2566

    Google Scholar 

  • Boureau Y L, Ponce J, LeCun Y. 2010b. A theoretical analysis of feature pooling in visual recognition. Haifa: Proceedings of the 27th International Conference On Machine Learning (ICML-10). 1: 111–118

    Google Scholar 

  • Brodrick P G, Davies A B, Asner G P. 2019. Uncovering ecological patterns with convolutional neural networks. Trends Ecol Evol, 34: 734–745

    Google Scholar 

  • Cantrell B, Martin L J, Ellis E C. 2017. Designing autonomy: Opportunities for new wildness in the anthropocene. Trends Ecol Evol, 32: 156–166

    Google Scholar 

  • Carranza-Rojas J, Goeau H, Bonnet P, Mata-Montero E, Joly A. 2017. Going deeper in the automated identification of Herbarium specimens. BMC Evol Biol, 17: 181–194

    Google Scholar 

  • Chai D, Newsam S, Zhang H K, Qiu Y, Huang J. 2019. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks. Remote Sens Environ, 225: 307–316

    Google Scholar 

  • Chen Y, Zhang Q, Huang C, Mu L, Meng G, Wang X. 2018, Reinforced evolutionary neural architecture search. arXiv: 1808.00193

    Google Scholar 

  • Cheng G, Yang C, Yao X, Guo L, Han J. 2018. When Deep Learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs. IEEE Trans Geosci Remote Sens, 56: 2811–2821

    Google Scholar 

  • Christin S, Hervet E, Lecomte N. 2018, Applications for deep learning in ecology. bioRxiv, doi: https://doi.org/10.1101/334854

    Google Scholar 

  • Comaniciu D, Meer P. 2002. Mean shift: A robust approach toward feature space analysis. IEEE Trans Pattern Anal Machine Intell, 24: 603–619

    Google Scholar 

  • Conneau A, Schwenk H, Barrault L, LeCun Y. 2016, Very Deep convolutional networks for text classification. arXiv: 1606.01781

    Google Scholar 

  • Connor J T, Martin R D, Atlas L E. 1994. Recurrent neural networks and robust time series prediction. IEEE Trans Neural Netw, 5: 240–254

    Google Scholar 

  • Cutler D R, Edwards Jr. T C, Beard K H, Cutler A, Hess K T, Gibson J, Lawler J J. 2007. Random forests for classification in ecology. Ecology, 88: 2783–2792

    Google Scholar 

  • De Brabandere B, Neven D, Van Gool L. 2017, Semantic instance segmentation with a discriminative loss function. arXiv: 1708.02551

    Google Scholar 

  • Dobrescu A, Valerio Giuffrida M, Tsaftaris S A. 2017. Leveraging multiple datasets for deep leaf counting. Proceedings of the IEEE International Conference on Computer Vision. 1: 2072–2079

    Google Scholar 

  • Douarre C, Schielein R, Frindel C, Gerth S, Rousseau D. 2016, Deep Learning based root-soil segmentation from X-ray tomography. bioRxiv, doi: https://doi.org/10.1101/071662

    Google Scholar 

  • Ehrlich P R, Ehrlich A H. 1970. Population, Resources, Environment. Issues in Human Ecology. San Francisco: Freeman and Company

    Google Scholar 

  • Fang H, Lafarge F. 2019. Pyramid scene parsing network in 3D: Improving semantic segmentation of point clouds with multi-scale contextual information. ISPRS J Photogramm Remote Sens, 154: 246–258

    Google Scholar 

  • Gatta C, Romero A, Veijer J V D. 2014. Unrolling loopy top-down semantic feedback in convolutional deep networks. Computer Vision and Pattern Recognition Workshops. 1: 504–511

    Google Scholar 

  • Ghosal S, Blystone D, Singh A K, Ganapathysubramanian B, Singh A, Sarkar S. 2018. An explainable deep machine vision framework for plant stress phenotyping. Proc Natl Acad Sci USA, 115: 4613–4618

    Google Scholar 

  • Girshick R. 2015. Fast R-CNN. Proceedings of the IEEE International Conference On Computer Vision. 1: 1440–1448

    Google Scholar 

  • Girshick R, Donahue J, Darrell T, Malik J. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1: 580–587

    Google Scholar 

  • Girshick R, Donahue J, Darrell T, Malik J. 2016. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans Pattern Anal Mach Intell, 38: 142–158

    Google Scholar 

  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. 2014. Generative adversarial nets. Advances in Neural Information Processing Systems. 1: 2672–2680

    Google Scholar 

  • Griffiths D, Boehm J. 2019. Improving public data for building segmentation from Convolutional Neural Networks (CNNs) for fused airborne lidar and image data using active contours. ISPRS J Photogramm Remote Sens, 154: 70–83

    Google Scholar 

  • Grinblat G L, Uzal L C, Larese M G, Granitto P M. 2016. Deep Learning for plant identification using vein morphological patterns. Comput Electron Agr, 127: 418–424

    Google Scholar 

  • Guo H D. 2014. Big data, big science, big discovery—Review of CODATA workshop on big data for international scientific programmes (in Chinese). Bull Chin Acad Sci, 29: 500–506

    Google Scholar 

  • Guo H D. 2018. Scientific big data—A footstone of national strategy for big data (in Chinese). Bull Chin Acad Sci, 33: 768–773

    Google Scholar 

  • Guo H D, Chen R S, Xu Z W, S J J, B J, W L Z, L J J, S H W, Gu D X, L D, S W Q, Z X, Spiess H W, Lengauer T. 2016. Big data in natural sciences, humanities and social sciences—Review of the 6th exploratory round table conference (in Chinese). Bull Chin Acad Sci, 31: 707–716

    Google Scholar 

  • Guo Q H, Kelly M, Graham C H. 2005. Support vector machines for predicting distribution of sudden oak death in California. Ecol Model, 182: 75–90

    Google Scholar 

  • Guo Z, Shengoku H, Wu G, Chen Q, Yuan W, Shi X, Shao X, Xu Y, Shibasaki R. 2018. Semantic segmentation for urban planning maps based on U-Net. IGARSS 2018–2018 IEEE Inter Geosci Remote Sensing Symposium, 1: 6187–6190

    Google Scholar 

  • Hamida A B, Benoit A, Lambert P, Ben Amar C. 2018. 3-D Deep Learning approach for remote sensing image classification. IEEE Trans Geosci Remote Sens, 56: 4420–4434

    Google Scholar 

  • Han W, Feng R, Wang L, Cheng Y. 2017. A semi-supervised generative framework with Deep Learning features for high-resolution remote sensing image scene classification. ISPRS J Photogramm Remote Sens, 145: 23–43

    Google Scholar 

  • Handan-Nader C, Ho D E. 2019. Deep learning to map concentrated animal feeding operations. Nat Sustain, 2: 298–306

    Google Scholar 

  • He D, Xia Y, Qin T, Wang L, Yu N, Liu T, Ma W Y. 2016. Dual learning for machine translation. Advances in Neural Information Processing Systems. 1: 820–828

    Google Scholar 

  • He K, Gkioxari G, Dollár P, Girshick R. 2017. Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision. 1: 2961–2969

    Google Scholar 

  • He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1: 770–778

    Google Scholar 

  • Hinton G E, Osindero S, Teh Y W. 2006. A fast learning algorithm for deep belief nets. Neural Comput, 18: 1527–1554

    Google Scholar 

  • Hinton G E, Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313: 504-507

    Google Scholar 

  • Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput, 9: 1735–1780

    Google Scholar 

  • Huang B, Zhao B, Song Y. 2018. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens Environ, 214: 73–86

    Google Scholar 

  • Jeong K S, Kim D K, Jung J M, Kim M C, Joo G J. 2008. Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics. Ecol Model, 211: 292–300

    Google Scholar 

  • Jeppesen J H, Jacobsen R H, Inceoglu F, Toftegaard T S. 2019. A cloud detection algorithm for satellite imagery based on Deep Learning. Remote Sens Environ, 229: 247–259

    Google Scholar 

  • Jin S, Su Y, Gao S, Hu T, Liu J, Guo Q. 2018a, The transferability of random forest in canopy height estimation from multi-source remote sensing data. Remote Sens, 10: 1183–1203

    Google Scholar 

  • Jin S, Su Y, Gao S, Wu F, Hu T, Liu J, Li W, Wang D, Chen S, Jiang Y, Pang S, Guo Q. 2018b, Deep Learning: Individual maize segmentation from terrestrial lidar data using Faster R-CNN and regional growth algorithms. Front Plant Sci, 9: 866–875

    Google Scholar 

  • Jin S, Su Y, Gao S, Wu F, Ma Q, Xu K, Ma Q, Hu T, Liu J, Pang S, Guan H, Zhang J, Guo Q. 2019. Separating the structural components of maize for field phenotyping using terrestrial lidar data and deep convolutional neural networks. IEEE Trans Geosci Remote Sens, doi: https://doi.org/10.1109/TGRS.2019.2953092

    Google Scholar 

  • Jin X, Liu S, Baret F, Hemerlé M, Comar A. 2017. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens Environ, 198: 105–114

    Google Scholar 

  • Jordan M I, Mitchell T M. 2015. Machine learning: Trends, perspectives, and prospects. Science, 349: 255–260

    Google Scholar 

  • Karpatne A, Ebert-Uphoff I, Ravela S, Babaie H A, Kumar V. 2018. Machine Learning for the geosciences: Challenges and opportunities. IEEE Trans Knowl Data Eng, 31: 1544–1554

    Google Scholar 

  • Kattge J, Díaz S, Lavorel S, Prentice I C, Leadley P, Bönisch G, Garnier E, Westoby M, Reich P B, Wright I J, Cornelissen J H C, Violle C, Harrison S P, Van BODEGOM P M, Reichstein M, Enquist B J, Soudzilovskaia N A, Ackerly D D, Anand M, Atkin O, Bahn M, Baker T R, Baldocchi D, Bekker R, Blanco C C, Blonder B, Bond W J, Bradstock R, Bunker D E, Casanoves F, Cavender-bares J, Chambers J Q, Chapin III F S, Chave J, Coomes D, Cornwell W K, Craine J M, Dobrin B H, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan W F, Fang J, Fernández-méndez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet G T, Fyllas N M, Gallagher R V, Green W A, Gutierrez A G, Hickler T, Higgins S I, Hodgson J G, Jalili A, Jansen S, Joly C A, Kerkhoff A J, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops J M H, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee T D, Leishman M, Lens F, Lenz T, Lewis S L, Lloyd J, Llusià J, Louault F, Ma S, Mahecha M D, Manning P, Massad T, Medlyn B E, Messier J, Moles A T, Müller S C, Nadrowski K, Naeem S, Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko V G, Onoda Y, Ordoñez J, Overbeck G, Ozinga W A, Patiño S, Paula S, Pausas J G, Peñuelas J, Phillips O L, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana J F, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright S J, Yguel B, Zaehle S, Zanne A E, Wirth C. 2011. TRY—A global database of plant traits. Glob Change Biol, 17: 2905–2935

    Google Scholar 

  • Kellenberger B, Marcos D, Tuia D. 2018. Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with Deep Learning. Remote Sens Environ, 216: 139–153

    Google Scholar 

  • Kemker R, Salvaggio C, Kanan C. 2018. Algorithms for semantic segmentation of multispectral remote sensing imagery using Deep Learning. ISPRS J Photogramm Remote Sens, 145: 60–77

    Google Scholar 

  • Knight E C, Hannah K C, Foley G J, Scott C D, Brigham R M, Bayne E. 2017. Recommendations for acoustic recognizer performance assessment with application to five common automated signal recognition programs. Avian Conserv Ecol, 12: 14–42

    Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton G E. 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems. 1: 1097–1105

    Google Scholar 

  • Kussul N, Lavreniuk M, Skakun S, Shelestov A. 2017. Deep Learning classification of land cover and crop types using remote sensing data. IEEE Geosci Remote Sens Lett, 14: 778–782

    Google Scholar 

  • Lai L, Huang X, Yang H, Chuai X, Zhang M, Zhong T, Chen Z, Chen Y, Wang X, Thompson J R. 2016. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci Adv, 2: e1601063

    Google Scholar 

  • Landrieu L, Simonovsky M. 2017. Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4558–4567

    Google Scholar 

  • LeCun Y. 2015. LeNet-5, convolutional neural networks. URL: http://yann.LeCun.com/exdb/lenet:20

    Google Scholar 

  • LeCun Y, Bengio Y, Hinton G. 2015. Deep Learning. Nature, 521: 436–444

    Google Scholar 

  • LeCun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to document recognition. Proc IEEE, 86: 2278–2324

    Google Scholar 

  • Lee S H, Chan C S, Wilkin P, Remagnino P. 2015. Deep-plant: Plant identification with convolutional neural networks. 2015 IEEE International Conference on Image Processing (ICIP). 1: 452–456

    Google Scholar 

  • Lee S H, Chang Y L, Chan C S, Remagnino P. 2016. Plant identification system based on a convolutional neural network for the LifeClef 2016 plant classification task. CLEF (Working Notes). 1: 502–510

    Google Scholar 

  • Lenihan J M, Drapek R, Bachelet D, Neilson R P. 2003. Climate change effects on vegetation distribution, carbon, and fire in California. Ecol Appl, 13: 1667–1681

    Google Scholar 

  • Li D. 1999. NII, NSDI and digital earth (in Chinese). Acta Geod Cartogr Sin, 28: 1–5

    Google Scholar 

  • Li D. 2016. Towards geo-spatial information sciences in big data era (in Chinese). Acta Geod Cartogr Sin, 45: 379–384

    Google Scholar 

  • Li J X, Zhang D X, Zhang J J, Zhang J, Xun L N, Yan Q, Destech Publicat I. 2016. Plant leaf recognition based on small datasets using deep learning algorithm. 2016 International Conference on Computer Science and Information Security (Csis 2016). 1: 351–355

    Google Scholar 

  • Li W, Fu H, Yu L, Cracknell A. 2017. Deep Learning based oil palm tree detection and counting for high-resolution remote sensing images. Remote Sens, 9: 22–34

    Google Scholar 

  • Li Z, Shen H, Cheng Q, Liu Y, You S, He Z. 2019. Deep Learning based cloud detection for medium and high resolution remote sensing images of different sensors. ISPRS J Photogramm Remote Sens, 150: 197–212

    Google Scholar 

  • Liang Z, Yang M, Wang C. 2019, 3D graph embedding learning with a structure-aware loss function for point cloud semantic instance segmentation. arXiv: 1902.05247

    Google Scholar 

  • Liu C, Furukawa Y. 2019, MASC: Multi-scale affinity with sparse convolution for 3D instance segmentation. arXiv: 1902.04478

    Google Scholar 

  • Liu J, Li J, Li W, Wu J. 2016. Rethinking big data: A review on the data quality and usage issues. ISPRS J Photogramm Remote Sens, 115: 134–142

    Google Scholar 

  • Liu R, Fan X, Cheng S, Wang X, Luo Z. 2017. Proximal alternating di- rection network: A globally converged deep unrolling framework. Thirty-Second AAAI Conference on Artificial Intelligence. 1: 1–8

    Google Scholar 

  • Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y, Berg A C. 2016. SSD: Single shot multibox detector. European Conference on Computer Vision. 1: 21–37

    Google Scholar 

  • Ma K, Zhu M, Ji L Q, Ma J C, Guo Q H, Ouyang Z Y, Zhu L. 2018. Establishing China infrastructure for big biodiversity data (in Chinese). Chin Acad Sci, 33: 80–87

    Google Scholar 

  • Madec S, Jin X, Lu H, De Solan B, Liu S, Duyme F, Heritier E, Baret F. 2019. Ear density estimation from high resolution RGB imagery using Deep Learning technique. Agric For Meteorol, 264: 225–234

    Google Scholar 

  • Mandic D P, Chambers J. 2001, Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. New Jersey: John Wiley & Sons, Inc

    Google Scholar 

  • Marcus G. 2018, Deep learning: A critical appraisal. arXiv: 1801.00631

    Google Scholar 

  • Martin A C, Harvey W J. 2017. The Global Pollen Project: A new tool for pollen identification and the dissemination of physical reference collections. Methods Ecol Evol, 8: 892–897

    Google Scholar 

  • McCallen E, Knott J, Nunez-Mir G, Taylor B, Jo I, Fei S. 2019. Trends in ecology: Shifts in ecological research themes over the past four decades. Front Ecol Environ, 17: 109–116

    Google Scholar 

  • McCulloch W S, Pitts W. 1943. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys, 5: 115–133

    Google Scholar 

  • Minsky M L, Papert S. 1969, Perceptrons: An Introduction to Computational Geometry. Cambridge: The MIT Press

    Google Scholar 

  • Mohanty S P, Hughes D P, Salathé M. 2016. Using Deep Learning for image-based plant disease detection. Front Plant Sci, 7: 1419–1428

    Google Scholar 

  • Monfreda C, Ramankutty N, Foley J A. 2008. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob Biogeochem Cycle, 22: GB1022

    Google Scholar 

  • Norouzzadeh M S, Nguyen A, Kosmala M, Swanson A, Palmer M S, Packer C, Clune J. 2018. Automatically identifying, counting, and describing wild animals in camera-trap images with Deep Learning. Proc Natl Acad Sci USA, 115: E5716–E5725

    Google Scholar 

  • Olden J D, Lawler J J, Poff N L R. 2008. Machine learning methods without tears: A primer for ecologists. Q Rev Biol, 83: 171–193

    Google Scholar 

  • Pan B, Shi Z, Xu X. 2017. MugNet: Deep Learning for hyperspectral image classification using limited samples. ISPRS J Photogramm Remote Sens, 145: 108–119

    Google Scholar 

  • Park Y S, Chon T S. 2007. Biologically-inspired machine learning implemented to ecological informatics. Ecol Model, 203: 1–7

    Google Scholar 

  • Pärnamaa T, Parts L. 2017. Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning. G3-Genes Genom Genet, 7: 1385–1392

    Google Scholar 

  • Pathak A R, Pandey M, Rautaray S. 2018. Application of deep learning for object detection. Procedia Comput Sci, 132: 1706–1717

    Google Scholar 

  • Pham Q H, Nguyen D T, Hua B S, Roig G, Yeung S K. 2019. JSIS3D: Joint semantic-instance segmentation of 3D point clouds with multi-task pointwise networks and multi-value conditional random fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 8827–8836

    Google Scholar 

  • Potamitis I. 2015. Unsupervised dictionary extraction of bird vocalisations and new tools on assessing and visualising bird activity. Ecol Inf, 26: 6–17

    Google Scholar 

  • Potamitis I. 2016. Deep Learning for detection of bird vocalisations. arXiv: 1609.08408

    Google Scholar 

  • Pound M P, Atkinson J A, Townsend A J, Wilson M H, Griffiths M, Jackson A S, Bulat A, Tzimiropoulos G, Wells D M, Murchie E H, Pridmore T P, French A P. 2017a, Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience, 6: 83–92

    Google Scholar 

  • Pound M P, Atkinson J A, Wells D M, Pridmore T P, French A P. 2017b. Deep Learning for multi-task plant phenotyping. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1: 2055–2063

    Google Scholar 

  • Purschke O, Dengler J, Bruelheide H, Hennekens S, Jandt U, Chytry M, Jansen F, Jiménez-Alfaro B, Kattge J, Lenoir J. 2015. sPlot—The new global vegetation-plot database for addressing trait-environment relationships across the world’s biomes. In: Mucina L, Price J N, Kalwij J M, eds. Biodiversity and Vegetation: Patterns, Processes, Conservation. 1: 90

    Google Scholar 

  • Qi C R, Su H, Mo K, Guibas L J. 2016, Pointnet: Deep Learning on point sets for 3D classification and segmentation. arXiv: 1612.00593

    Google Scholar 

  • Qi C R, Yi L, Su H, Guibas L J. 2017. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 652–660

    Google Scholar 

  • Rahnemoonfar M, Sheppard C. 2017. Real-time yield estimation based on Deep Learning. SPIE Commercial+ Scientific Sensing and Imaging. 1: 10218: 09-15

    Google Scholar 

  • Ramankutty N, Evan A T, Monfreda C, Foley J A. 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycle, 22: GB1003

    Google Scholar 

  • Ramcharan A, Baranowski K, McCloskey P, Ahmed B, Legg J, Hughes D P. 2017. Deep Learning for image-based cassava disease detection. Front Plant Sci, 8: 1852–1858

    Google Scholar 

  • Ravanelli M. 2017, Deep Learning for distant speech recognition. arXiv: 1712.06086

    Google Scholar 

  • Recknagel F. 2001. Applications of machine learning to ecological modelling. Ecol Model, 146: 303–310

    Google Scholar 

  • Redmon J, Divvala S, Girshick R, Farhadi A. 2016. You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1: 779–788

    Google Scholar 

  • Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N, Prabhat N. 2019. Deep learning and process understanding for datadriven Earth system science. Nature, 566: 195–204

    Google Scholar 

  • Ren S, He K, Girshick R, Sun J. 2015. Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems. 1: 91–99

    Google Scholar 

  • Romera-Paredes B, Torr P H S. 2016. Recurrent instance segmentation. European Conference on Computer Vision. 1: 312–329. In: 5Leibe B, Matas J, Sebe N, Welling M, eds. Computer Vision-ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9910. Cham: Springer

    Google Scholar 

  • Ronneberger O, Fischer P, Brox T. 2015. U-Net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention. 1: 234–241

    Google Scholar 

  • Rosenblatt F. 1960. Perceptron simulation experiments. Proc IRE, 48: 301–309

    Google Scholar 

  • Ross T Y L P G, Dollár G K H P. 2017. Focal loss for dense object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2980–2988

    Google Scholar 

  • Rumelhart D E, Hinton G E, Williams R J. 1986. Learning representations by back-propagating errors. Nature, 323: 533–536

    Google Scholar 

  • Rzanny M, Seeland M, Wäldchen J, Mäder P. 2017. Acquiring and preprocessing leaf images for automated plant identification: Understanding the tradeoff between effort and information gain. Plant Methods, 13: 97–107

    Google Scholar 

  • Salamon J, Bello J P, Farnsworth A, Kelling S. 2017. Fusing shallow and Deep Learning for bioacoustic bird species classification. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 1: 141–145

    Google Scholar 

  • Schmidhuber J. 2015. Deep Learning in neural networks: An overview. Neural Networks, 61: 85–117

    Google Scholar 

  • Scott M J, Bilyard G R, Link S O, Ulibarri C A, Westerdahl H E, Ricci P F, Seely H E. 1998. Valuation of ecological resources and functions. Environ Manage, 22: 49–68

    Google Scholar 

  • Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. 2013, Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv: 1312.6229

    Google Scholar 

  • Shi M, Xie F, Zi Y, Yin J. 2016. Cloud detection of remote sensing images by Deep Learning. Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International. 1: 701–704

    Google Scholar 

  • Shwartz-Ziv R, Tishby N. 2017, Opening the black box of deep neural networks via information. arXiv: 1703.00810

    Google Scholar 

  • Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D. 2017. Mastering the game of Go without human knowledge. Nature, 550: 354–359

    Google Scholar 

  • Singh A K, Ganapathysubramanian B, Sarkar S, Singh A. 2018. Deep Learning for plant stress phenotyping: Trends and future perspectives. Trends Plant Sci, 23: 883–898

    Google Scholar 

  • Song S, Xiao J. 2016. Deep sliding shapes for amodal 3D object detection in RGB-D images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1: 808–816

    Google Scholar 

  • Sun Y, Zhang X, Xin Q, Huang J. 2018. Developing a multi-filter convolutional neural network for semantic segmentation using high-resolution aerial imagery and LiDAR data. ISPRS J Photogramm Remote Sens, 143: 3–14

    Google Scholar 

  • Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1: 1–9

    Google Scholar 

  • Taghavi Namin S, Esmaeilzadeh M, Najafi M, Brown T B, Borevitz J O. 2018. Deep phenotyping: Deep Learning for temporal phenotype/genotype classification. Plant Methods, 14: 66–79

    Google Scholar 

  • Tang Z T, Shao K, Zhao D B, Zhu Y H. 2017. Recent progress of deep reinforcement learning: From AlphaGo to AlphaGo Zero. IET Control Theory Appl, 34: 1529–1546

    Google Scholar 

  • Thessen A. 2016. Adoption of machine learning techniques in ecology and earth science. One Ecosystem, 1: 8621–8658

    Google Scholar 

  • Thi Thanh-Nhan N, Thi-Lan L, Hai V, Huy-Hoang N, Van-Sam H. 2017. A combination of Deep Learning and hand-designed feature for plant identification based on leaf and flower images. Asian Conference on Intelligent Information and Database Systems. Cham: Springer. 223–233

    Google Scholar 

  • Ubbens J R, Stavness I. 2017. Deep plant phenomics: A Deep Learning platform for complex plant phenotyping tasks. Front Plant Sci, 8: 1

    Google Scholar 

  • Volpi M, Tuia D. 2018. Deep multi-task learning for a geographicallyregularized semantic segmentation of aerial images. ISPRS J Photogramm Remote Sens, 144: 48–60

    Google Scholar 

  • Wang G, Sun Y, Wang J. 2017. Automatic image-based plant disease severity estimation using deep learning. Comput Intel Neurosc, 1: 1–8

    Google Scholar 

  • Wang L, Sng D. 2015, Deep Learning algorithms with applications to video analytics for a smart city: A survey. arXiv: 1512.03131

    Google Scholar 

  • Wang W, Yu R, Huang Q, Neumann U. 2018. SGPN: Similarity group proposal network for 3D point cloud instance segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1: 2569–2578

    Google Scholar 

  • Wang X, Liu S, Shen X, Shen C, Jia J. 2019. Associatively segmenting instances and semantics in point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4096–4105

    Google Scholar 

  • Wang Y, Sun Y, Liu Z, Sarma S E, Bronstein M M, Solomon J M. 2018. Dynamic graph CNN for learning on point clouds. ACM Trans Graph (TOG), 38: 1–12

    Google Scholar 

  • Wang Y, Yu Y, Liu M. 2019, PointIT: A aast tracking framework based on 3D instance segmentation. arXiv: 1902.06379

    Google Scholar 

  • Webb S. 2018. Deep learning for biology. Nature, 554: 555–557

    Google Scholar 

  • Weinstein B G, Marconi S, Bohlman S, Zare A, White E. 2019. Individual tree-crown detection in RGB imagery using semi-supervised Deep Learning neural networks. Remote Sens, 11: 1309–1321

    Google Scholar 

  • Wieland M, Li Y, Martinis S. 2019. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network. Remote Sens Environ, 230: 111203–111214

    Google Scholar 

  • Wild B, Sixt L, Landgraf T. 2018, Automatic localization and decoding of honeybee markers using deep convolutional neural networks. arXiv: 1802.04557

    Google Scholar 

  • Wolf M. 2003, Method for unrolling two-deep loops with convex bounds and imperfectly nested code, and for unrolling arbitrarily deep nests with constant bounds and imperfectly nested code: U.S. Patent 6567976. 2003-5-20

    Google Scholar 

  • Wu B F, Zhang X, Zeng H W, Zhang M, Tian F Y. 2018. Big data methods for environmental data (in Chinese). Chin Acad Sci, 8: 1–8

    Google Scholar 

  • Wu M, Hughes M C, Parbhoo S, Zazzi M, Roth V, Doshi-Velez F. 2017. Beyond sparsity: Tree regularization of deep models for interpretability. In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018

    Google Scholar 

  • Wurm M, Stark T, Zhu X X, Weigand M, Taubenböck H. 2019. Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS J Photogramm Remote Sens, 150: 59–69

    Google Scholar 

  • Xiong X, Duan L, Liu L, Tu H, Yang P, Wu D, Chen G, Xiong L, Yang W, Liu Q. 2017. Panicle-SEG: A robust image segmentation method for rice panicles in the field based on Deep Learning and superpixel optimization. Plant Methods, 13: 104–118

    Google Scholar 

  • Xu Z B, Yang Y, Sun J. 2013. A new approach to solve inverse problems: Combination of model-based solving and example-based learning (in Chinese). Sci Sin Math, 47: 1345–1354

    Google Scholar 

  • Yalcin H, Razavi S, IEEE. 2016. Plant classification using convolutional neural networks. 2016 Fifth International Conference on Agro-Geoinformatics. 233–237

    Google Scholar 

  • Yan X, Ai T, Yang M, Yin H. 2019. A graph convolutional neural network for classification of building patterns using spatial vector data. ISPRS J Photogramm, 150: 259–273

    Google Scholar 

  • Yang S, Feng Q, Liang T, Liu B, Zhang W, Xie H. 2018. Modeling grassland above-ground biomass based on artificial neural network and remote sensing in the Three-River Headwaters Region. Remote Sens Environ, 204: 448–455

    Google Scholar 

  • Yao X, Guo J, Hu J, Cao Q. 2019. Using Deep learning in semantic classification for point cloud data. IEEE Access, 7: 37121–37130

    Google Scholar 

  • Yi L, Zhao W, Wang H, Sung M, Guibas L. 2018. GSPN: Generative shape proposal network for 3D instance segmentation in point cloud. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 3947–3956

    Google Scholar 

  • Younis S, Weiland C, Hoehndorf R, Dressler S, Hickler T, Seeger B, Schmidt M. 2018. Taxon and trait recognition from digitized herbarium specimens using deep convolutional neural networks. Bot Lett, 165: 377–383

    Google Scholar 

  • Zhai M G, Yang S F, Chen N H, Chen H L. 2018. Big data epoch: Challenges and opportunities for geology (in Chinese). Chin Acad Sci, 33: 825–831

    Google Scholar 

  • Zhang C, Sargent I, Pan X, Li H, Gardiner A, Hare J, Atkinson P M. 2018. An object-based convolutional neural network (OCNN) for urban land use classification. Remote Sens Environ, 216: 57–70

    Google Scholar 

  • Zhang R, Li G, Li M, Wang L. 2018. Fusion of images and point clouds for the semantic segmentation of large-scale 3D scenes based on Deep Learning. ISPRS J Photogramm Remote Sens, 143: 85–96

    Google Scholar 

  • Zhang S, Huai Y. 2016. Leaf image recognition based on layered convolutions neural network Deep Learning. J Beijing Forest Univ, 38: 108–115

    Google Scholar 

  • Zhang X, Luo H, Fan X, Xiang W, Sun Y, Xiao Q, Jiang W, Zhang C, Sun J. 2017, AlignedReID: Surpassing human-level performance in person re-identification. arXiv: 1711.08184

    Google Scholar 

  • Zhang Z, Cui P, Zhu W. 2018, Deep Learning on graphs: A Survey. arXiv: 1812.04202

    Google Scholar 

  • Zhao L, Wang J, Li X, Tu Z, Zeng W. 2016, On the connection of deep fusion to ensembling. arXiv: 1611.07718

    Google Scholar 

  • Zhong Z, Li J, Luo Z, Chapman M. 2017. Spectral-spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans Geosci Remote Sens, 56: 847–858

    Google Scholar 

  • Zhou J, Cui G, Zhang Z, Yang C, Sun M. 2018, Graph neural networks: A review of methods and applications. arXiv: 1812.08434

    Google Scholar 

  • Zou Q, Ni L, Zhang T, Wang Q. 2015. Deep Learning based feature selection for remote sensing scene classification. IEEE Geosci Remote Sens Lett, 12: 2321–2325

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA19050401) and the National Natural Science Foundation of China (Grant Nos. 31971575 & 41871332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Jin, S., Li, M. et al. Application of deep learning in ecological resource research: Theories, methods, and challenges. Sci. China Earth Sci. 63, 1457–1474 (2020). https://doi.org/10.1007/s11430-019-9584-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9584-9

Keywords

Navigation