Skip to main content
Log in

Ocean contributes to the melting of the Jakobshavn Glacier front

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Jakobshavn Glacier (JG) in Greenland is one of the most active glaciers in the world. It was close to balance before 1997 but this was followed by a sudden transition to rapid thinning. The reason for the change remains unclear. In this study, The NASA Pre-IceBridge ice thickness data are collected to monitor the melting of JG front. The surface elevation decreased by around 90 m from 1995 to 2002 on the floating front. A distributed energy balance model is developed to estimate the energy balance of JG front in the past 30 years (1986–2016). The results indicate that multi-year average energy fluxes absorbed by the floating front of JG from the ocean were about 500 W m−2 from 1986 to 2016. This is approximately two times of the energy fluxes from atmosphere during the same period. The energy fluxes from the ocean increased from 200 to 600 W m−2 during the period from 1990 to 1998 while energy fluxes from the atmosphere remained stable at about 250 W m−2. These results demonstrate that ocean contributes more to the melting of the JG front, and suggest that bottom surface melting must have a profound influence on marine terminating glacier dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amundson J M, Fahnestock M, Truffer M, Brown J, Lüthi M P, Motyka R J. 2010. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J Geophys Res, 115: F01005

    Google Scholar 

  • Berrisford P, Dee D P, Poli P, Brugge R, Fielding M, Fuentes M, Kallberg P W, Kobayashi S, Uppala S, Simmons A. 2011. The ERA-Interim archive Version 2.0 ERA Report Series. Shinfield Park, Reading: ECMWF. 23

    Google Scholar 

  • Bougamont M, Bamber J L, Greuell W. 2005. A surface mass balance model for the Greenland Ice Sheet. J Geophys Res, 110: F04018

    Google Scholar 

  • Cassotto R, Fahnestock M, Amundson J M, Truffer M, Joughin I. 2015. Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland. J Glaciol, 61: 76–88

    Google Scholar 

  • Chernos M, Koppes M, Moore R D. 2016. Ablation from calving and surface melt at lake-terminating Bridge Glacier, British Columbia, 1984–2013. Cryosphere, 10: 87–102

    Google Scholar 

  • Enderlin E M, Howat I M, Jeong S, Noh M J, van Angelen J H, van den Broeke M R. 2014. An improved mass budget for the Greenland ice sheet. Geophys Res Lett, 41: 866–872

    Google Scholar 

  • Fenty I, Willis J, Khazendar A, Dinardo S, Forsberg R, Fukumori I, Holland D, Jakobsson M, Moller D, Morison J, Münchow A, Rignot E, Schodlok M, Thompson A, Tinto K, Rutherford M, Trenholm N. 2016. Oceans melting Greenland: Early results from NASA’s ocean-ice mission in Greenland. Oceanography, 29: 72–83

    Google Scholar 

  • Gladish C V, Holland D M, Rosing-Asvid A, Behrens J W, Boje J. 2015. Oceanic boundary conditions for Jakobshavn Glacier. Part I: Variability and renewal of ilulissat icefjord waters, 2001–14. J Phys Oceanogr, 45: 3–32

    Google Scholar 

  • Herzfeld U C, McDonald B, Wallin B F, Krabill W, Manizade S, Sonntag J, Mayer H, Yearsley W A, Chen P A, Weltman A. 2014. Elevation changes and dynamic provinces of Jakobshavn Isbræ, Greenland, derived using generalized spatial surface roughness from ICESat GLAS and ATM data. J Glaciol, 60: 834–848

    Google Scholar 

  • Holland D M, Holland D. 2016. Air temperature, relative humidity, and others collected from Automatic Weather Station installed on rock outcrop in Jakobshavn Glacier Ice Front from 2007-10-13 to 2016-02-14.Version 1.1 NCEI Accession 0148760: NOAA National Centers for Environmental Information

  • Holland D M, Jenkins A. 1999. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. J Phys Oceanogr, 29: 1787–1800

    Google Scholar 

  • Holland D M, Thomas R H, De Young B, Ribergaard M H, Lyberth B. 2008. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat Geosci, 1: 659–664

    Google Scholar 

  • Joughin I, Smith B E, Howat I M, Floricioiu D, Alley R B, Truffer M, Fahnestock M. 2012. Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and modelbased analysis. J Geophys Res, 117: F02030

    Google Scholar 

  • Kehrl L M, Joughin I, Shean D E, Floricioiu D, Krieger L. 2017. Seasonal and interannual variabilities in terminus position, glacier velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from 2008 to 2016. J Geophys Res-Earth Surf, 122: 1635–1652

    Google Scholar 

  • Khan S A, Kjær K H, Bevis M, Bamber J L, Wahr J, Kjeldsen K K, Bjørk A A, Korsgaard N J, Stearns L A, van den Broeke M R, Liu L, Larsen N K, Muresan I S. 2014. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat Clim Change, 4: 292–299

    Google Scholar 

  • Krabill W, Abdalati W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J. 2000. Greenland ice sheet: High-elevation balance and peripheral thinning. Science, 289: 428–430

    Google Scholar 

  • Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J. 2004. Greenland ice sheet: Increased coastal thinning. Geophys Res Lett, 31: L24402

    Google Scholar 

  • McPhee M G, Morison J H, Nilsen F. 2008. Revisiting heat and salt exchange at the ice-ocean interface: Ocean flux and modeling considerations. J Geophys Res, 113: C06014

    Google Scholar 

  • McPhee M G. 1992. Turbulent heat flux in the upper ocean under sea ice. J Geophys Res, 97: 5365–5379

    Google Scholar 

  • McPhee M G, Kikuchi T, Morison J H, Stanton T P. 2003. Ocean-to-ice heat flux at the North Pole environmental observatory. Geophys Res Lett, 30: 2274

    Google Scholar 

  • McPhee M G, Kottmeier C, Morison J H. 1999. Ocean heat flux in the central Weddell Sea during winter. J Phys Oceanogr, 29: 1166–1179

    Google Scholar 

  • McPhee M G, Maykut G A, Morison J H. 1987. Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J Geophys Res, 92: 7017–7031

    Google Scholar 

  • Moon T, Joughin I, Smith B. 2015. Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. J Geophys Res-Earth Surf, 120: 818–833

    Google Scholar 

  • Moon T, Joughin I, Smith B, Howat I. 2012. 21st-century evolution of Greenland outlet glacier velocities. Science, 336: 576–578

    Google Scholar 

  • Morlighem M, Williams C N, Rignot E, An L, Arndt J E, Bamber J L, Catania G, Chauché N, Dowdeswell J A, Dorschel B, Fenty I, Hogan K, Howat I, Hubbard A, Jakobsson M, Jordan T M, Kjeldsen K K, Millan R, Mayer L, Mouginot J, Noël B P Y, O’Cofaigh C, Palmer S, Rysgaard S, Seroussi H, Siegert M J, Slabon P, Straneo F, van den Broeke M R, Weinrebe W, Wood M, Zinglersen K B. 2017. BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys Res Lett, 44: 11051–11061

    Google Scholar 

  • Motyka R J, Truffer M, Fahnestock M, Mortensen J, Rysgaard S, Howat I. 2011. Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J Geophys Res, 116: F01007

    Google Scholar 

  • Nick F M, Luckman A, Vieli A, van der Veen C J, van As D, van de Wal R S W, Pattyn F, Hubbard A L, Floricioiu D. 2012. The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. J Glaciol, 58: 229–239

    Google Scholar 

  • Nick F M, Vieli A, Howat I M, Joughin I. 2009. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat Geosci, 2: 110–114

    Google Scholar 

  • Nick F M, Luckman A, Vieli A, Van Der Veen C J. 2017. The response of petermann glacier, greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. J Glaciol, 58: 229–239

    Google Scholar 

  • Paden J, Li J, Leuschen C, Rodriguez-Morales F, Hale R. 2011. Pre-Ice-Bridge MCoRDS L2 Ice Thickness, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/QKMTQ02C2U56

    Google Scholar 

  • Podrasky D, Truffer M, Lüthi M, Fahnestock M. 2014. Quantifying velocity response to ocean tides and calving near the terminus of Jakobshavn Isbræ, Greenland. J Glaciol, 60: 609–621

    Google Scholar 

  • Rignot E, Koppes M, Velicogna I. 2010. Rapid submarine melting of the calving faces of West Greenland glaciers. Nat Geosci, 3: 187–191

    Google Scholar 

  • Rosenau R, Schwalbe E, Maas H G, Baessler M, Dietrich R. 2013. Grounding line migration and high-resolution calving dynamics of Jakobshavn Isbræ, West Greenland. J Geophys Res-Earth Surf, 118: 382–395

    Google Scholar 

  • Shannon S R, Payne A J, Bartholomew I D, van den Broeke M R, Edwards T L, Fettweis X, Gagliardini O, Gillet-Chaulet F, Goelzer H, Hoffman M J, Huybrechts P, Mair D W F, Nienow P W, Perego M, Price S F, Smeets C J P P, Sole A J, van de Wal R S W, Zwinger T. 2013. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise. Proc Natl Acad Sci USA, 110: 14156–14161

    Google Scholar 

  • Shepherd A, Ivins E R A G, Barletta V R, Bentley M J, Bettadpur S, Briggs K H, Bromwich D H, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King M A, Lenaerts J T M, Li J, Ligtenberg S R M, Luckman A, Luthcke S B, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas J P, Paden J, Payne A J, Pritchard H, Rignot E, Rott H, Sørensen L S, Scambos T A, Scheuchl B, Schrama E J O, Smith B, Sundal A V, van Angelen J H, van de Berg W J, van den Broeke M R, Vaughan D G, Velicogna I, Wahr J, Whitehouse P L, Wingham D J, Yi D, Young D, Zwally H J. 2012. A reconciled estimate of ice-sheet mass balance. Science, 338: 1183–1189

    Google Scholar 

  • Sole A, Payne T, Bamber J, Nienow P, Krabill W. 2008. Testing hypotheses of the cause of peripheral thinning of the Greenland Ice Sheet: Is land-terminating ice thinning at anomalously high rates? Cryosphere, 2: 205–218

    Google Scholar 

  • Straneo F, Curry R G, Sutherland D A, Hamilton G S, Cenedese C, Våge K, Stearns L A. 2011. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat Geosci, 4: 322–327

    Google Scholar 

  • Thomas R H, Abdalati W, Frederick E, Krabill W B, Manizade S, Steffen K. 2003. Investigation of surface melting and dynamic thinning on Jakobshavn Isbræ, Greenland. J Glaciol, 49: 231–239

    Google Scholar 

  • Tiwari M, Nagoji S, Kumar V, Tripathi S, Behera P. 2018. Oxygen isotope-salinity relation in an Arctic fjord (Kongsfjorden): Implications to hydrographic variability. Geosci Front, 9: 1937–1943

    Google Scholar 

  • Van Der Veen C J, Plummer J C, Stearns L A. 2011. Controls on the recent speed-up of Jakobshavn Isbræ, West Greenland. J Glaciol, 57: 770–782

    Google Scholar 

  • Walsh K M, Howat I M, Ahn Y, Enderlin E M. 2012. Changes in the marine-terminating glaciers of central east Greenland, 2000–2010. Cryosphere, 6: 211–220

    Google Scholar 

  • Wettlaufer J S. 1991. Heat flux at the ice-ocean interface. J Geophys Res, 96: 7215–7236

    Google Scholar 

  • Yu Y, Rothrock D A. 1996. Thin ice thickness from satellite thermal imagery. J Geophys Res, 101: 25753–25766

    Google Scholar 

  • Zika J D, Skliris N, Blaker A T, Marsh R, Nurser A J G, Josey S A. 2018. Improved estimates of water cycle change from ocean salinity: The key role of ocean warming. Environ Res Lett, 13: 074036

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2018YFC1406101) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Cheng or Zhuoqi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Cheng, X., Chen, Z. et al. Ocean contributes to the melting of the Jakobshavn Glacier front. Sci. China Earth Sci. 63, 405–411 (2020). https://doi.org/10.1007/s11430-019-9394-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9394-6

Keywords

Navigation