Skip to main content
Log in

n-Alkyl lipid concentrations and distributions in aquatic plants and their individual δD variations

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Aquatic plants are major input sources of autochthonous organic matter in lake sediments, but investigations on fatty acid (FA) and n-alkane distributions in aquatic plants are currently limited, greatly hindering the applications of their isotope geochemistry in lacustrine environments. Here, the reported n-alkyl lipid distributions of aquatic plants in globally studied lakes, together with newly obtained aquatic plant n-alkyl lipid data in Chinese lakes (Yunnan and Inner Mongolia), are used to understand their distribution characteristics. The results show that aquatic plants have predominantly mid-chain lipids (C23–C25n-alkanes and C22–C24 FAs), differing from that of terrestrial plants (dominant by long-chain lipids), but the long-chain n-alkanes (e.g., C27 and C29) and long-chain FAs (e.g., C26 and C28) also show high abundances in most samples. Submerged plants have high concentrations of long-chain n-alkanes (avg. 47 µg g−1) and long-chain FAs (avg. 170 µg g−1), close to those in terrestrial plants, indicating that submerged plants may make large contributions of long-chain n-alkyl lipids to lake sediments, while the contributions of long-chain n-alkyl lipids derived from algae to lake sediments may be small because of their low concentrations (avg. 2 µg g−1 for n-alkanes and 9 µg g−1 for FAs). We find that lipid molecular proxies (including ACL14–32 and ATR14–18) can be reliably used to distinguish the FAs sourced from algae and other plants, and Paq’ values can be utilized to distinguish the n-alkane sources between submerged plants and terrestrial plants. Aquatic plants do not have significant δD differences among different chain-length n-alkanes and FAs for each sample, suggesting that the offset between δD values of different chain-length n-alkyl lipids in lake sediments can help determine sedimentary lipid input sources and infer paleohydrological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aichner B, Herzschuh U, Wilkes H. 2010a. Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau. Org Geochem, 41: 706–718

    Article  Google Scholar 

  • Aichner B, Herzschuh U, Wilkes H, Vieth A, Böhner J. 2010b. δD values of n-alkanes in Tibetan lake sediments and aquatic macrophytes—A surface sediment study and application to a 16 ka record from Lake Koucha. Org Geochem, 41: 779–790

    Article  Google Scholar 

  • Aichner B, Hilt S, Périllon C, Gillefalk M, Sachse D. 2017. Biosynthetic hydrogen isotopic fractionation factors during lipid synthesis in submerged aquatic macrophytes: Effect of groundwater discharge and salinity. Org Geochem, 113: 10–16

    Article  Google Scholar 

  • Berke M A, Cartagena Sierra A, Bush R, Cheah D, O’Connor K. 2019. Controls on leaf wax fractionation and δ 2H values in tundra vascular plants from western Greenland. Geochim Cosmochim Acta, 244: 565–583

    Article  Google Scholar 

  • Bush R T, McInerney F A. 2013. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta, 117: 161–179

    Article  Google Scholar 

  • Castañeda I S, Schouten S. 2011. A review of molecular organic proxies for examining modern and ancient lacustrine environments. Quat Sci Rev, 30: 2851–2891

    Article  Google Scholar 

  • Chikaraishi Y, Naraoka H. 2003. Compound-specific δD-δ 13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry, 63: 361–371

    Article  Google Scholar 

  • Cranwell P A, Eglinton G, Robinson N. 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments—II. Org Geochem, 11: 513–527

    Article  Google Scholar 

  • Duan Y, Wu Y, Cao X, Zhao Y, Ma L. 2014. Hydrogen isotope ratios of individual n-alkanes in plants from Gannan Gahai Lake (China) and surrounding area. Org Geochem, 77: 96–105

    Article  Google Scholar 

  • Duan Y, Xu L. 2012. Distributions of n-alkanes and their hydrogen isotopic composition in plants from Lake Qinghai (China) and the surrounding area. Appl Geochem, 27: 806–814

    Article  Google Scholar 

  • Eglinton T I, Eglinton G. 2008. Molecular proxies for paleoclimatology. Earth Planet Sci Lett, 275: 1–16

    Article  Google Scholar 

  • Feakins S J, Bentley L P, Salinas N, Shenkin A, Blonder B, Goldsmith G R, Ponton C, Arvin L J, Wu M S, Peters T, West A J, Martin R E, Enquist B J, Asner G P, Malhi Y. 2016. Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon. Geochim Cosmochim Acta, 182: 155–172

    Article  Google Scholar 

  • Ficken K J, Li B, Swain D L, Eglinton G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem, 31: 745–749

    Article  Google Scholar 

  • Freimuth E J, Diefendorf A F, Lowell T V. 2017. Hydrogen isotopes of n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate forest and implications for paleorecords. Geochim Cosmochim Acta, 206: 166–183

    Article  Google Scholar 

  • Gao L, Hou J, Toney J, MacDonald D, Huang Y. 2011. Mathematical modeling of the aquatic macrophyte inputs of mid-chain n-alkyl lipids to lake sediments: Implications for interpreting compound specific hydrogen isotopic records. Geochim Cosmochim Acta, 75: 3781–3791

    Article  Google Scholar 

  • Guenther F, Aichner B, Siegwolf R, Xu B, Yao T, Gleixner G. 2013. A synthesis of hydrogen isotope variability and its hydrological significance at the Qinghai-Tibetan Plateau. Quat Int, 313–314: 3–16

    Article  Google Scholar 

  • Hou J, D’Andrea W J, MacDonald D, Huang Y. 2007. Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachusetts (USA). Org Geochem, 38: 977–984

    Article  Google Scholar 

  • Huang Y, Street-Perrott F A, Metcalfe S E, Brenner M, Moreland M, Freeman K H. 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science, 293: 1647–1651

    Article  Google Scholar 

  • Kunst L, Samuels A L. 2003. Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res, 42: 51–80

    Article  Google Scholar 

  • Kunst L, Samuels L. 2009. Plant cuticles shine: Advances in wax biosynthesis and export. Curr Opin Plant Biol, 12: 721–727

    Article  Google Scholar 

  • Li D W, Han J T, Sun H G, Li D, Pang Z H, Cui L L, Wang X, Cao Y N, Liu W G. 2015. n-Alkanes and hydrogen isotope fractionations of aquatic plants in lakes on the Changbai Mountains-Lake Baikal transect. Chin Sci Bull, 60: 2774–2883

    Article  Google Scholar 

  • Liu H, Liu W. 2016. n-Alkane distributions and concentrations in algae, submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau. Org Geochem, 99: 10–22

    Article  Google Scholar 

  • Liu H, Liu W. 2017. Concentration and distributions of fatty acids in algae, submerged plants and terrestrial plants from the northeastern Tibetan Plateau. Org Geochem, 113: 17–26

    Article  Google Scholar 

  • Liu W, Yang H. 2008. Multiple controls for the variability of hydrogen isotopic compositions in higher plant n-alkanes from modern ecosystems. Glob Change Biol, 14: 2166–2177

    Article  Google Scholar 

  • Liu H, Yang H, Cao Y, Leng Q, Liu W. 2018a. Inter-molecular variations of fatty acid δD in algae and submerged plants from the north-eastern Tibetan Plateau. Org Geochem, 122: 17–28

    Article  Google Scholar 

  • Liu H, Yang H, Cao Y, Liu W. 2018b. Compound-specific δD and its hydrological and environmental implication in the lakes on the Tibetan Plateau. Sci China Earth Sci, 61: 765–777

    Article  Google Scholar 

  • Liu W, Yang H, Wang H, An Z, Wang Z, Leng Q. 2015. Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: A dual indicator of paleoenvironment in the Qinghai-Tibet Plateau. Org Geochem, 83–84: 190–201

    Article  Google Scholar 

  • Liu W G, Yang H, Wang H Y, Yao Y, Wang Z, Cao Y N. 2016. Influence of aquatic plants on the hydrogen isotope composition of sedimentary long-chain n-alkanes in the Lake Qinghai region, Qinghai-Tibet Plateau. Sci China Earth Sci, 59: 1368–1377

    Article  Google Scholar 

  • Mügler I, Sachse D, Werner M, Xu B, Wu G, Yao T, Gleixner G. 2008. Effect of lake evaporation on δD values of lacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Org Geochem, 39: 711–729

    Article  Google Scholar 

  • Nuñez R, Spiro B, Pentecost A, Kim A, Coletta P. 2002. Organo-geochemical and stable isotope indicators of environmental change in a marl lake, Malham Tarn, North Yorkshire, U.K. J Paleolimnology, 28: 403–417

    Article  Google Scholar 

  • Ouyang X, Guo F, Bu H. 2015. Lipid biomarkers and pertinent indices from aquatic environment record paleoclimate and paleoenvironment changes. Quat Sci Rev, 123: 180–192

    Article  Google Scholar 

  • Rao Z, Zhu Z, Jia G, Henderson A C G, Xue Q, Wang S. 2009. Compound specific δD values of long chain n-alkanes derived from terrestrial higher plants are indicative of the δD of meteoric waters: Evidence from surface soils in eastern China. Org Geochem, 40: 922–930

    Article  Google Scholar 

  • Sachse D, Billault I, Bowen G J, Chikaraishi Y, Dawson T E, Feakins S J, Freeman K H, Magill C R, McInerney F A, van der Meer M T J, Polissar P, Robins R J, Sachs J P, Schmidt H L, Sessions A L, White J W C, West J B, Kahmen A. 2012. Molecular paleohydrology: Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu Rev Earth Planet Sci, 40: 221–249

    Article  Google Scholar 

  • Sachse D, Radke J, Gleixner G. 2006. δD values of individual n-alkanes from terrestrial plants along a climatic gradient—Implications for the sedimentary biomarker record. Org Geochem, 37: 469–483

    Article  Google Scholar 

  • Sessions A L, Sylva S P, Summons R E, Hayes J M. 2004. Isotopic exchange of carbon-bound hydrogen over geologic timescales. Geochim Cosmochim Acta, 68: 1545–1559

    Article  Google Scholar 

  • Street-Perrott F A, Huang Y, Perrott R A, Eglinton G, Barker P, Ben Khelifa L, Harkness D D, Olago D O. 1997. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science, 278: 1422–1426

    Article  Google Scholar 

  • Volkman J K, Barrett S M, Blackburn S I, Mansour M P, Sikes E L, Gelin F. 1998. Microalgal biomarkers: A review of recent research developments. Org Geochem, 29: 1163–1179

    Article  Google Scholar 

  • Wang Z, Liu W. 2012. Carbon chain length distribution in n-alkyl lipids: A process for evaluating source inputs to Lake Qinghai. Org Geochem, 50: 36–43

    Article  Google Scholar 

  • Xie Y, Xu B Q, Wu G J, Lin S B. 2012. Influence of variation in precipitation on the δD values of terrestrial n-alkanes on the southern Tibetan Plateau. Chin Sci Bull, 57: 2140–2147

    Article  Google Scholar 

  • Yang H, Huang Y. 2003. Preservation of lipid hydrogen isotope ratios in Miocene lacustrine sediments and plant fossils at Clarkia, northern Idaho, USA. Org Geochem, 34: 413–423

    Article  Google Scholar 

  • Zhang X, Xu B, Günther F, Mügler I, Lange M, Zhao H, Li J, Gleixner G. 2017. Hydrogen isotope ratios of terrestrial leaf wax n-alkanes from the Tibetan Plateau: Controls on apparent enrichment factors, effect of vapor sources and implication for altimetry. Geochim Cosmochim Acta, 211: 10–27

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Yunning Cao for support with GC and GC-TC-IRMS analyses. Two anonymous reviewers are thanked for constructive comments. This research was supported by the National Natural Science Foundation of China (Grant No. 41573005), the National Basic Research Programme of China (Grant No. 2013CB955901), the Key Program of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC001), and the State Key Laboratory of Loess and Quaternary Geology (Grant No. SKLLQG1632).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, Z., Zhao, C. et al. n-Alkyl lipid concentrations and distributions in aquatic plants and their individual δD variations. Sci. China Earth Sci. 62, 1441–1452 (2019). https://doi.org/10.1007/s11430-019-9370-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9370-8

Keywords

Navigation