Skip to main content
Log in

Hydrocarbon generation characteristics and exploration prospects of Proterozoic source rocks in China

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

A large number of primary oil and gas reservoirs have been discovered in Proterozoic strata all over the globe. Proterozoic sequences are widely distributed in China, and the discovery of large Sinian-aged gas reservoirs in the Sichuan Basin and Mesoproterozoic liquid oil seepages in North China shows that attention should be paid to the exploration potential of Proterozoic strata. In this paper, the main controlling factors of Proterozoic source rocks are discussed. Principally, active atmospheric circulation and astronomical cycles may have driven intense upwelling and runoff to provide nutrients; oxygenated oceanic surface waters could have provided suitable environments for the organisms to thrive; volcanic activity and terrestrial weathering caused by continental break-up would have injected large amounts of nutrients into the ocean, leading to persistent blooms of marine organisms; and extensive anoxic deep waters may have created ideal conditions for the preservation of organic matter. Additionally, the appearance of eukaryotes resulted in diversified hydrocarbon parent material, which effectively improved the generation potential for oil and gas. Through the comparison of Formations across different cratons, seven sets of Proterozoic organic-rich source rocks have been recognized in China, which mainly developed during interglacial periods and are also comparable worldwide. The Hongshuizhuang and Xiamaling Formations in North China have already been identified previously as Mesoproterozoic source rocks. The early Proterozoic Changchengian System is highly promising as a potential source rock in the Ordos Basin. In the Upper Yangtze area, the Neoproterozoic Datangpo and Doushantuo Formations are extensively distributed, and represent the major source rocks for Sinian gas reservoirs in the Sichuan Basin. Moreover, the Nanhuan System may contain abundant shales with high organic matter contents in the Tarim Basin, although this possibility still needs to be verified. Indeed, all three cratons may contain source rocks of Proterozoic strata; thus, these strata represent major exploration targets worthy of great attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad M, Dunster J N, Munson T J, Edgoose C J. 2013. Overview of the geology and mineral and petroleum resources of the McArthur Basin. In: Annual Geoscience Exploration Seminar, Northern Territory, Australia

    Google Scholar 

  • Algeo T J, Meyers P A, Robinson R S, Rowe H, Jiang G Q. 2014. Icehouse-greenhouse variations in marine denitrification. Biogeosciences, 11: 1273–1295

    Article  Google Scholar 

  • Anbar A D, Knoll A H. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297: 1137–1142

    Article  Google Scholar 

  • Baudino R, Monge A M, Ferreira L M G, Haryono S, Sofia S, Hafizi N E, Hernán-Gómez J, Brisson I, Grammatico G, Ochoa M, Tocco R, Badali M, Pichaco B C, Varade R, Abdallah H. 2014. Assessing a petroleum system on the frontier of geological time: The Mesoproterozoic of the Taoudeni Basin (Mauritania). In: International Conference & Exhibition, Istanbul

    Google Scholar 

  • Bhat G M, Craig J, Hafiz M, Hakhoo N, Thurow J W, Thusu B, Cozzi A. 2012. Geology and hydrocarbon potential of Neoproterozoic-Cambrian Basins in Asia: An introduction. Geol Soc Lond Spec Publ, 366: 1–17

    Article  Google Scholar 

  • Blumenberg M, Thiel V, Riegel W, Kah L C, Reitner J. 2012. Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania. Precambrian Res, 196-197: 113–127

    Article  Google Scholar 

  • Brocks J J, Banfield J. 2009. Unravelling ancient microbial history with community proteogenomics and lipid geochemistry. Nat Rev Microbiol, 7: 601–609

    Article  Google Scholar 

  • Brocks J J, Jarrett A J M, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T. 2017. The rise of algae in Cryogenian oceans and the emergence of animals. Nature, 548: 578–581

    Article  Google Scholar 

  • Brocks J J, Logan G A, Buick R, Summons R E. 1999. Archean molecular fossils and the early rise of eukaryotes. Science, 285: 1033–1036

    Article  Google Scholar 

  • Brocks J J, Love G D, Summons R E, Knoll A H, Logan G A, Bowden S A. 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 437: 866–870

    Article  Google Scholar 

  • Brocks J J, Pearson A. 2005. Building the biomarker tree of life. Rev Mineral Geochem, 59: 233–258

    Article  Google Scholar 

  • Butterfield N J, Knoll A H, Swett K. 1990. A bangiophyte red alga from the Proterozoic of arctic Canada. Science, 250: 104–107

    Article  Google Scholar 

  • Canfield D E. 1998. A new model for Proterozoic ocean chemistry. Nature, 396: 450–453

    Article  Google Scholar 

  • Canfield D E, Poulton S W, Narbonne G M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315: 92–95

    Article  Google Scholar 

  • Canfield D E, Raiswell R. 1999. The evolution of the sulfur cycle. Am J Sci, 299: 697–723

    Google Scholar 

  • Canfield D E, Zhang S, Wang H, Wang X, Zhao W, Su J, Bjerrum C J, Haxen E R, Hammarlund E U. 2018. A Mesoproterozoic Iron Formation. Proc Natl Acad Sci USA, 115: E3895–E3904

    Article  Google Scholar 

  • Chen J P, Liang D G, Zhang S C, Bian L Z, Zhong N N, Zhao J, Gong F H, Deng C P, Zhang D J, Zhang B M. 2013. Shale and mudstone: Essential source rocks in the Proterozoic to Paleozoic marine basins in China (in Chinese). Acta Geol Sin, 87: 905–921

    Google Scholar 

  • Chen L, Xiao S H, Pang K, Zhou C M, Yuan X L. 2014. Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils. Nature, 516: 238–241

    Article  Google Scholar 

  • Cheng J, Feng J, Sun J, Huang Y, Zhou J H, Cen K F. 2014. Enhancing the lipid content of the diatom Nitzschia sp. by 60Co-γ irradiation mutation and high-salinity domestication. Energy, 78: 9–15

    Article  Google Scholar 

  • Cheng M, Li C, Zhou L, Xie S C. 2015. Mo marine geochemistry and reconstruction of ancient ocean redox states. Sci China Earth Sci, 58: 2123–2133

    Article  Google Scholar 

  • Cloud P E, Licari G R, Wright L A, Troxel B W. 1969. Proterozoic eu-caryotes from eastern California. Proc Natl Acad Sci USA, 62: 623–630

    Article  Google Scholar 

  • Condon D, Zhu M Y, Bowring S, Wang W, Yang A H, Jin Y G. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308: 95–98

    Article  Google Scholar 

  • Craig J, Biffi U, Galimberti R F, Ghori K A R, Gorter J D, Hakhoo N, Le Heron D P, Thurow J, Vecoli M. 2013. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks. Mar Pet Geol, 40: 1–47

    Article  Google Scholar 

  • Craig J, Thurow J, Thusu B, Whitham A, Abutarruma Y. 2009. Global Neoproterozoic petroleum systems: The emerging potential in North Africa. Geol Soc Lond Spec Publ, 326: 1–25

    Article  Google Scholar 

  • Cui H Z, Jiang X D, Deng Q, Wang J, Zhuo X W, Ren G M, Cai J J, Wu H, Jiang Z F. 2016. Zircon U-Pb geochronological results of the Danzhou Group in northern Guangxi and their implications for the Neoproter-ozoic rifting stages in South China (in Chinese). Geotect Metal, 40: 1049–1063

    Google Scholar 

  • Cui H Z, Jiang X S, Wang J, Zhuo J W, Xiong G Q, Lu J Z, Deng Q, Wu H, Liu J H. 2013. Zircon U-Pb geochronology for the stratotype section of the Neoproterozoic Chengjiang Formation in central Yunnan and its geological significance (in Chinese). Geoscience, 27: 547–556

    Google Scholar 

  • Cui J W. 2011. Comparison of multiple occurrence biomarkers of core and outcrop in Gaoyuzhuang and Hongshuizhuang Fm, Jibei Sab (in Chinese). Acta Sedimentol Sin, 29: 593–598

    Google Scholar 

  • Du J H, Zou C N, Xu C C, He H Q, Shen P, Yang Y M, Li Y L, Wei G Q, Wang Z C, Yang Y. 2014. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin (in Chinese). Petrol Explor Dev, 41: 268–277

    Google Scholar 

  • Dutkiewicz A, Volk H, Ridley J, George S. 2003. Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin, Australia. Geology, 31: 981–984

    Article  Google Scholar 

  • Fan W B. 2015. Geological features and research progress of the Meso-proterozoic Xiamaling Formation in the North China Craton: A review after nearly one hundred years of study (in Chinese). Geol Rev, 61: 1383–1406

    Google Scholar 

  • Fang J, Liu B Q. 2012. Thermal experiments on lime-shale from the Upper Proterozoic Xiamaling Formation at Xiahuayuan, Zhangjiakou (in Chinese). Geol J Chin U, 8: 345–355

    Google Scholar 

  • Farquhar J, Wing B A, McKeegan K D, Harris J W, Cartigny P, Thiemens M H. 2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science, 298: 2369–2372

    Article  Google Scholar 

  • French K L, Hallmann C, Hope J M, Schoon P L, Zumberge J A, Hoshino Y, Peters C A, George S C, Love G D, Brocks J J, Buick R, Summons R E. 2015. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc Natl Acad Sci USA, 112: 5915–5920

    Article  Google Scholar 

  • Gaillard F, Scaillet B, Arndt N T. 2011. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature, 478: 229–232

    Article  Google Scholar 

  • Gao J, Wang X S, Klemd R, Jiang T, Qian Q, Mu L X, Ma Y Z. 2015. Record of assembly and breakup of Rodinia in the Southwestern Altaids: Evidence from Neoproterozoic magmatism in the Chinese Western Tianshan Orogen. J Asian Earth Sci, 113: 173–193

    Article  Google Scholar 

  • Gao L Z, Ding X Z, Pang X Q, Zhang C H. 2011. New geological time scale of Meso- and Neoproterozoic of China and geochronologic constraint by SHRIMP zircon U-Pb dating (in Chinese). J Stratigra, 35: 1–7

    Google Scholar 

  • Gao L Z, Zhang C H, Liu P J, Ding X Z, Wang Z Q, Zhang Y J. 2009. Recognition of Meso- and Neoproterozoic stratigraphic framework in North and South China (in Chinese). Acta Geosci Sin, 30: 433–446

    Google Scholar 

  • Gao L Z, Zhang C H, Yin Z Y, Shi X Y, Wang Z Q, Liu Y M, Liu P J, Tang F, Song B. 2008. SHRIMP zircon ages: Basis for redining the chron-ostratigraphic classification of the Meso- and Neoproterozoic strats in North China old land (in Chinese). Acta Geosci Sin, 29: 366–376

    Google Scholar 

  • Ge W C, Li X H, Li Z X, Zhou H W. 2001. Mafic intrusions in longsheng area: Age and its geological implications (in Chinese). Chin J Geol, 36: 112–118

    Google Scholar 

  • Geboy N J. 2006. Rhenium-Osmium Age Determinations of Glaciogenic Shales from the Mesoproterozoic Vazante Formation, Brazil. Master Dissertation. Washington: University of Maryland, College Park

    Google Scholar 

  • Gilleaudeau G J, Kah L C. 2013. Carbon isotope records in a Mesopro-terozoic epicratonic sea: Carbon cycling in a low-oxygen world. Pre-cambrian Res, 228: 85–101

    Article  Google Scholar 

  • Giorgioni M, Keller C E, Weissert H, Hochuli P A, Bernasconi S M. 2015. Black shales—From coolhouse to greenhouse (early Aptian). Cretac Res, 56: 716–731

    Article  Google Scholar 

  • Grosjean E, Love G D, Stalvies C, Fike D A, Summons R E. 2009. Origin of petroleum in the Neoproterozoic-Cambrian South Oman Salt Basin. Org Geochem, 40: 87–110

    Article  Google Scholar 

  • Guan S W, Wu L, Ren R, Zhu G Y, Peng Z Q, Zhao W T, Li J. 2017. Distribution and petroleum prospect of Precambrian rifts in the main cratons, China (in Chinese). Acta Petrol Sin, 38: 9–22

    Article  Google Scholar 

  • Han T M, Runnegar B. 1992. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan. Science, 257: 232–235

    Article  Google Scholar 

  • Hays J D, Imbrie J, Shackleton N J. 1976. Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science, 194: 1121–1132

    Article  Google Scholar 

  • He J W, Zhu W B, Ge R F. 2014. New age constraints on Neoproterozoic diamicites in Kuruktag, NW China and Precambrian crustal evolution of the Tarim Craton. Precambrian Res, 241: 44–60

    Article  Google Scholar 

  • Hlebszevitsch J C, Gebhard I, Cruz C E, Consoli V. 2009. The “Infra-cambrian System” in the southwestern margin of Gondwana, southern South America. In: Hlebszevitsch J C, Gebhard I, Cruz C E, Consoli V, eds. global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa. London: Geol Soc Lond Spec Publ. 289–302

    Google Scholar 

  • Hou G, Santosh M, Qian X, Lister G S, Li J. 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Res, 14: 395–409

    Article  Google Scholar 

  • Imbus S W, Macko S A, Douglas Elmore R, Engel M H. 1992. Stable isotope (C, S, N) and molecular studies on the Precambrian nonesuch Shale (Wisconsin-Michigan, U.S.A.): Evidence for differential preservation rates, depositional environment and hydrothermal influence. Chem Geol, 101: 255–281

    Google Scholar 

  • Javaux E J, Knoll A H, Walter M R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology, 2: 121–132

    Article  Google Scholar 

  • Jiang Z F, Cui X Z, Jiang X S, Wang J, Zhuo J W, Xiong G Q, Lu J Z, Wu H, Wei Y N. 2016. New zircon U-Pb ages of the pre-Sturtian rift successions from the western Yangtze Block, South China and their geological significance. Int Geol Rev, 58: 1064–1075

    Article  Google Scholar 

  • Kasting J F, Siefert J L. 2002. Life and the evolution of Earth’s atmosphere. Science, 296: 1066–1068

    Article  Google Scholar 

  • Kelly A E, Love G D, Lyons T W, Anbar A D. 2010. An integrated organic-inorganic geochemical study of the 1.64 Ga Barney Creek Formation in Australia. AGU Fall Meeting. B51G-0429

    Google Scholar 

  • Klemme H, Ulmishek G F. 1991. Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors (1). Am Assoc Pet Geol Bull, 75: 1809–1851

    Google Scholar 

  • Knauth L P, Lowe D R. 2003. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol Soc Am Bull, 115: 566–580

    Article  Google Scholar 

  • Knoll A H, Javaux E J, Hewitt D, Cohen P. 2006. Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc B-Biol Sci, 361: 1023–1038

    Article  Google Scholar 

  • Kolonic S, Wagner T, Forster A, Sinninghe Damsté J S, Walsworth-Bell B, Erba E, Turgeon S, Brumsack H J, Chellai E H, Tsikos H, Kuhnt W, Kuypers M M M. 2005. Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: Climate coupling and global organic carbon burial. Paleoceanography, 20: PA1006

    Article  Google Scholar 

  • Kopp R E, Kirschvink J L, Hilburn I A, Nash C Z. 2005. The Paleopro-terozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA, 102: 11131–11136

    Article  Google Scholar 

  • Kump L R, Brantley S L, Arthur M A. 2000. Chemical Weathering, Atmospheric CO2, and Climate. Annu Rev Earth Planet Sci, 28: 611–667

    Article  Google Scholar 

  • Lamb D M, Awramik S M, Chapman D J, Zhu S. 2009. Evidence for eukaryotic diversification in the ~1800 million-year-old Changzhougou Formation, North China. Precambrian Res, 173: 93–104

    Article  Google Scholar 

  • Lan Z W, Li X H, Zhu M Y, Chen Z Q, Zhang Q R, Li Q L, Lu D B, Yiu Y, Tang G Q. 2014. A rapid and synchronous initiation of the wide spread Cryogenian glaciations. Precambrian Res, 255: 401–411

    Article  Google Scholar 

  • Lan Z, Li X H, Zhang Q R, Li Q L. 2015. Global synchronous initiation of the 2nd episode of Sturtian glaciation: SIMS zircon U-Pb and O isotope evidence from the Jiangkou Group, South China. Precambrian Res, 267: 28–38

    Article  Google Scholar 

  • Lenton T M, Boyle R A, Poulton S W, Shields-Zhou G A, Butterfield N J. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neo-proterozoic era. Nat Geosci, 7: 257–265

    Article  Google Scholar 

  • Li C, Cheng M, Algeo T J, Xie S C. 2015. A theoretical prediction of chemical zonation in early oceans (>520 Ma). Sci China Earth Sci, 58: 1901–1909

    Article  Google Scholar 

  • Li C, Cheng M, Zhu M, Lyons T W. 2018. Heterogeneous and dynamic marine shelf oxygenation and coupled early animal evolution. Emerg Top Life Sci, 2: 279–288

    Article  Google Scholar 

  • Li H K, Su W B, Zhou H Y, Geng J Z, Xiang Z Q, Cui Y R, Liu W C, Lu S N. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670 Ma: Constraints from zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyun County, Beijing (in Chinese). Front Earth Sci, 18: 108–120

    Google Scholar 

  • Li H K, Su W B, Zhou H Y, Xiang Z Q, Tian Q, Yang L G. 2014. The first precise age constraints on the Jixian System of the Meso-to Neopro-terozoic Standard Section of China: SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling Formations in the Jixian Section, North China Craton (in Chinese). Acta Petrol Sin, 30: 2999–3012

    Google Scholar 

  • Li H K, Zhang C L, Yao C Y, Xiang Z Q. 2013. U-Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif. Sci China Earth Sci, 56: 628–639

    Article  Google Scholar 

  • Li H K, Zhu S X, Xiang Z Q, Su W B, Lu S N, Zhou H Y, Geng, J Z, Li S, Yang F J. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing Beijing.: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton (in Chinese). Acta Petrol Sin, 26: 2131–2140

    Google Scholar 

  • Li M, Wang C, Wang Z F. 2013. Depoisitonal age and geological implications of the Ruyang Group in the southwestern margin of the North China Craton: Evidence from detrial zircon U-Pb ages (in Chinese). Chin J Geol, 48: 1115–1139

    Google Scholar 

  • Li Z X, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Verni-kovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res, 160: 179–210

    Article  Google Scholar 

  • Li X H. 1999. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia Assembly. Precambrian Res, 97: 43–57

    Article  Google Scholar 

  • Li X H, Li Z X, Zhou H W, Liu Y, Kinny P D. 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoicbimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia. Precambrian Res, 113: 135–154

    Article  Google Scholar 

  • Liu Y, Zhong N N, Tian Y J, Qi W, Mu G Y. 2011. The oldest oil accumulation in China: Meso-proterozoic Xiamaling Formation bituminous sandstone reservoirs (in Chinese). Petrol Explor Dev, 38: 503–512

    Article  Google Scholar 

  • Long X P, Yuan C, Sun M, Kröner A, Zhao G C, Wilde S, Hu A Q. 2011. Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: Evidence from Neoproterozoic granitoids in the Kulu-ketage area, NW China. Precambrian Res, 187: 1–14

    Article  Google Scholar 

  • Love G D, Grosjean E, Stalvies C, Fike D A, Grotzinger J P, Bradley A S, Kelly A E, Bhatia M, Meredith W, Snape C E, Bowring S A, Condon D J, Summons R E. 2009. Fossil steroids record the appearance of De-mospongiae during the Cryogenian period. Nature, 457: 718–721

    Article  Google Scholar 

  • Lu S N, Li H M. 1991. A precise U-Pb singe zircon age determination for the volcanics of Dahongyu Formation Changcheng System in Jixian (in Chinese). Bull Chin Acad Geol Sci, 22: 137–145

    Google Scholar 

  • Luo G M, Hallmann C, Xie S C, Ruan X Y, Summons R E. 2015. Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation. Geochim Cosmochim Acta, 151: 150–167

    Article  Google Scholar 

  • Luo G M, Junium C K, Kump L R, Huang J H, Li C, Feng Q H, Shi X Y, Bai X, Xie S C. 2014. Shallow stratification prevailed for ~1700 to ~1300 Ma ocean: Evidence from organic carbon isotopes in the North China Craton. Earth Planet Sci Lett, 400: 219–232

    Article  Google Scholar 

  • Luo Q Y, Zhong N N, Zhu L, Wang Y N, Qin J, Qi L, Zhang Y, Ma Y. 2013. Correlation of burial organic carbon and paleoproductivity in the Me-soproterozoic Hongshuizhuang Formation, northern North China (in Chinese). Chin Sci Bull, 58: 1036–1047

    Google Scholar 

  • Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506: 307–315

    Article  Google Scholar 

  • Lyons T W, Reinhard C T. 2011. Sea change for the rise of oxygen. Nature, 478: 194–195

    Article  Google Scholar 

  • Marshall A O, Corsetti F A, Sessions A L, Marshall C P. 2009. Raman spectroscopy and biomarker analysis reveal multiple carbon inputs to a Precambrian glacial sediment. Org Geochem, 40: 1115–1123

    Article  Google Scholar 

  • McFadden K A, Huang J, Chu X, Jiang G, Kaufman A J, Zhou C, Yuan X, Xiao S. 2008. Pulsed oxidation and biological evolution in the Edia-caran Doushantuo Formation. Proc Natl Acad Sci USA, 105: 3197–3202

    Article  Google Scholar 

  • Melenevskii V N. 2012. Modeling of catagenetic transformation of organic matter from a Riphean mudstone in hydrous pyrolysis experiments: Biomarker data. Geochem Int, 50: 425–436

    Article  Google Scholar 

  • Meng F W, Yuan X L, Zhou C M, Chen Z L. 2003. Dinosterane from the Neoproterozoic Datangpo black shales and its biological implications (in Chinese). Acta Micropaleo Sin, 20: 97–102

    Google Scholar 

  • Meng F W, Zhou C M, Yan K, Yuan X L, Yin L M. 2006. Biological orgin of early Palaeozoic and Precambrian hydrocarbon surce rocks based on C27/C29 sterane raro and organic carbon isotope (in Chinese). Acta Micropaleo Sin, 23: 51–56

    Google Scholar 

  • Meyers P A, Bernasconi S M. 2005. Carbon and nitrogen isotope excursions in mid-Pleistocene sapropels from the Tyrrhenian Basin: Evidence for climate-induced increases in microbial primary production. Mar Geol, 220: 41–58

    Article  Google Scholar 

  • Nance R D, Murphy J B, Santosh M. 2014. The supercontinent cycle: A retrospective essay. Gondwana Res, 25: 4–29

    Article  Google Scholar 

  • Nance R D, Worsley T R, Moody J B. 1988. The supercontinent cycle. Sci Am, 259: 72–79

    Article  Google Scholar 

  • Och L M, Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Sci Rev, 110: 26–57

    Article  Google Scholar 

  • Pavlov A A, Hurtgen M T, Kasting J F, Arthur M A. 2003. Methane-rich Proterozoic atmosphere? Geology, 31: 87–90

    Article  Google Scholar 

  • Peng Y B, Bao H M, Yuan X L. 2009. New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res, 168: 223–232

    Article  Google Scholar 

  • Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide: Biomarkers and Isotopes in the Environment and Human History. Cambridge: Cambridge University Press. 704

    Google Scholar 

  • Planavsky N J, McGoldrick P, Scott C T, Li C, Reinhard C T, Kelly A E, Chu X, Bekker A, Love G D, Lyons T W. 2011. Widespread iron-rich conditions in the Mid-Proterozoic ocean. Nature, 477: 448–451

    Article  Google Scholar 

  • Planavsky N J, Reinhard C T, Wang X, Thomson D, McGoldrick P, Rainbird R H, Johnson T, Fischer W W, Lyons T W. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346: 635–638

    Article  Google Scholar 

  • Poulton S W, Canfield D E. 2011. Ferruginous conditions: A dominant feature of the ocean through Earth’s history. Elements, 7: 107–112

    Article  Google Scholar 

  • Poulton S W, Fralick P W, Canfield D E. 2004. The transition to a sulphidic ocean ~1.84 billion years ago. Nature, 431: 173–177

    Article  Google Scholar 

  • Poulton S W, Fralick P W, Canfield D E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat Geosci, 3: 486–490

    Article  Google Scholar 

  • Reinhard C T, Raiswell R, Scott C, Anbar A D, Lyons T W. 2009. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science, 326: 713–716

    Article  Google Scholar 

  • Ren R, Guan S W, Wu L, Zhu G Y. 2017. The north-south differentiation characteristic and its enlightenment on oil-gas exploration of the Neo-proterozic rift basin, Tarim Basin (in Chinese). Acta Petrol Sin, 38: 255–266

    Google Scholar 

  • Riding R. 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4: 299–316

    Article  Google Scholar 

  • Rogers J J W, Santosh M. 2002. Configuration of Columbia, a Mesopro-terozoic supercontinent. Gondwana Res, 5: 5–22

    Article  Google Scholar 

  • Sahoo S K, Planavsky N J, Kendall B, Wang X, Shi X, Scott C, Anbar A D, Lyons T W, Jiang G. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546–549

    Article  Google Scholar 

  • Schaefer K. 2017. This country is caught in acatch-22 with Energy

    Google Scholar 

  • Schopf J W. 2006. Fossil evidence of Archaean life. Philos Trans R Soc B-Biol Sci, 361: 869–885

    Article  Google Scholar 

  • Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X L, Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456–459

    Article  Google Scholar 

  • Shen Y N, Buick R, Canfield D E. 2001. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410: 77–81

    Article  Google Scholar 

  • Slack J F, Grenne T, Bekker A, Rouxel O J, Lindberg P A. 2007. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet Sci Lett, 255: 243–256

    Article  Google Scholar 

  • Strand K. 2012. Global and continental-scale glaciations on the Pre-cambrian earth. Mar Pet Geol, 33: 69–79

    Article  Google Scholar 

  • Su W B, Li H K, Huff W D, Ettensohn F R, Zhang S H, Zhou H Y, Wan Y S. 2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China (in Chinese). Chin Sci Bull, 55: 2197–2206

    Article  Google Scholar 

  • Su W B, Li H S, Xu L, Jia S H, Geng J Z, Zhou H Y, Wang Z H, Pu H Y. 2012. Luoyu and Ruyang Group at the south margin of the North China Craton (NCC) should belong in the Mesoproterozoic Changchengian-System: Direct constraints from the LA-MC-ICPMS U-Pb age of the tuffite in the Luoyukou Formation, Ruzhou, Henan, China (in Chinese). Geol Sur Res, 35: 96–108

    Google Scholar 

  • Summons R E, Brassell S C, Eglinton G, Evans E, Horodyski R J, Robinson N, Ward D M. 1988. Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim Cosmochim Acta, 52: 2625–2637

    Article  Google Scholar 

  • Summons R E, Jahnke L L, Hope J M, Logan G A. 1999. 2-Methylho-panoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400: 554–557

    Article  Google Scholar 

  • Sun S, Wang T G. 2015. Meso-Neoproterozoic Geology and Petroleum Resources in Eastern China (in Chinese). Beijing: Science Press

    Google Scholar 

  • Tang D J, Shi X Y, Wang X Q, Jiang G Q. 2016. Extremely low oxygen concentration in Mid-Proterozoic shallow seawaters. Precambrian Res, 276: 145–157

    Article  Google Scholar 

  • Tissot B P, Welte D H. 1978. Petroleum Formation and Occurance: A New Approach to Oil and Gas Exploration. Heidelberg: Springer. 538

    Book  Google Scholar 

  • Vogel M B, Moldowan J M, Zinniker D. 2005. Biomarkers from Units in the Uinta Mountain and Chuar Groups. In: Vogel B M, Moldowan M J, Zinniker D, eds. The AAPG/Datapages Combined Publications Database. 75–96

    Google Scholar 

  • Wang H Z. 1985. Atlas of the Palaeogeography of China (in Chinese). Beijing: Cartogra Pub House

    Google Scholar 

  • Wang J, Li Z X. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Res, 122: 141–158

    Article  Google Scholar 

  • Wang S W, Liao Z W, Sun X M, Zhou B G, Guo Y, Jiang X F, Zhu H P, Sun Z M, Luo M J, Ma D. 2013. Age and geochemistry of the Caiyuanzi granite in Sichuan, SW China: Mechanism of the Grenvillian Orogenic Movement in the western margin of Yangtze Block (in Chinese). Acta Geol Sin, 87: 55–70

    Article  Google Scholar 

  • Wang T G, Han K Y. 2011. On Meso-Neoproterozoic primary petroleum resources (in Chinese). Acta Petreo Sin, 32: 1–7

    Article  Google Scholar 

  • Wang T G, Li M J, Wang C J, Wang G L, Zhang W B, Shi Q, Zhu L. 2008. Organic molecular evidence in the Late Neoproterozoic Tillites for a palaeo-oceanic environment during the snowball Earth era in the Yangtze region, southern China. Precambrian Res, 162: 317–326

    Article  Google Scholar 

  • Wang T G, Zhong N N, Wang C J, Zhu Y X, Liu Y, Song D F. 2016. Source beds and oil entrapment-alteration histories of fossil-oil-reservoirsin the Xiamaling Formation Basal Sandstone, Jibei Depression (in Chinese). Petro Sci Bull, 1: 24–37

    Google Scholar 

  • Wang X L, Zhou J C, Griffin W L, Wang R C, Qiu J S, O’Reilly S Y, Xu X, Liu X M, Zhang G L. 2007. Detrital zircon geochronology of Pre-cambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Res, 159: 117–131

    Article  Google Scholar 

  • Wang X L, Zhou J C, Griffin W, Wang R C, Qiu J S, O’Reilly S, Xu X S, Liu X M, Zhang G L. 2017. Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting. Am J Sci, 317: 861–900

    Google Scholar 

  • Wang Z C, Jiang H, Wang T S, Gu Z D, Huang S P. 2014. Hydrocarbon systems and exploration potentials of Neoproterozoic in the Upper Yangtze region (in Chinese). Nat Gas Ind, 34: 27–36

    Google Scholar 

  • Wei G Q, Wang Z H, Li J, Yang W, Xie Z Y. 2017. Characteristics of source rocks, resource potential and exploration direction of Sinian and Cambrian in Sichuan Basin (in Chinese). Nat Gas Geosci, 28: 1–13

    Google Scholar 

  • Wen Z X, Tong X G, Zhang G Y, Wang Y M. 2012. Petroleum geology features and exploration potential of Basin Group in east African rift system (in Chinese). Chin Petrol Expor, 4: 60–65

    Google Scholar 

  • Wu L, Guan S W, Ren R, Wang X B, Yang H J, Jin J Q, Zhu G Y. 2016. The characteristics of Precambrian sedimentary basin and the distribution of deep source rock: A case study of Tarim Basin in Neoproterozoic and source rocks in Early Cambrian, Western China (in Chinese). Petrol Expor Dev, 43: 905–915

    Google Scholar 

  • Xie L J, Sun Y G, Yang Z W, Chen J P, Jiang A Z, Zhang Y D, Deng C P. 2013. Evaluation of hydrocarbon generation of the Xiamaling Formation shale in Zhangjiakou and its significance to the petroleum geology in North China. Sci China Earth Sci, 56: 444–452

    Article  Google Scholar 

  • Xie S C, Yin H F, Shi X Y. 2011. Geobiology: Interactions and Co-Evolution Between Life and Earth Environments (in Chinese). Beijing: Science Press

    Google Scholar 

  • Xu B, Xiao S H, Zou H B, Chen Y, Li Z X, Song B, Liu D Y, Zhou C M, Yuan X L. 2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Res, 168: 247–258

    Article  Google Scholar 

  • Xu B, Zou H B, Chen Y, He J Y, Wang Y. 2013. The Sugetbrak basalts from northwestern Tarim Block of northwest China: Geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic. Precambrian Res, 236: 214–226

    Article  Google Scholar 

  • Xu Z Q, He B Z, Zhang C L, Zhang J X, Wang Z M, Cai Z H. 2013. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: New geochronological evidence from deep drilling samples. Precambrian Res, 235: 150–162

    Article  Google Scholar 

  • Ye Y T, Wang H J, Zhai L N, Zhou W X, Wang X M, Zhang S C, Wu C D. 2017. Geological events and their biological responses during the Neoproterozoic Era (in Chinese). Acta Sedim Sin, 35: 203–216

    Google Scholar 

  • Yin C Y, Liu D Y, Gao L Z, Wang Z Q, Xing Y S, Jian P, Shi Y R. 2003. Lower boundary age of the Nanhua System and the Gucheng glacial stage: Evidence from SHRIMP II dating (in Chinese). Chin Sci Bull, 48: 1657–1662

    Article  Google Scholar 

  • Yin F G, Sun Z M, Zhang Z. 2012. Mesoproterozoic stratigraphic-structure framework in Huili-Dongchuan area (in Chinese). Geol Rev, 57: 770–778

    Google Scholar 

  • Yin Z J, Zhu M Y, Davidson E H, Bottjer D J, Zhao F C, Tafforeau P. 2015. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proc Nat Acad Sci USA, 112: E1453–E1460

    Google Scholar 

  • Yuan X L, Chen Z, Xiao S H, Zhou C M, Hua H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eu-karyotes. Nature, 470: 390–393

    Article  Google Scholar 

  • Zhai M G, Hu B, Peng P, Zhao T P. 2014. Meso-Neoproterozic magmatic events and multi-stage rifting in the NCC (in Chinese). Front Earth Sci, 21: 100–119

    Google Scholar 

  • Zhai M G. 2013. The main old lands in China and assembly of Chinese unified continent. Sci China Earth Sci, 56: 1829–1852

    Article  Google Scholar 

  • Zhang C H, Gao L Z, Wu Z J, Shi X Y, Yan Q R, Li S J. 2007. SHRIMP U-Pb zircon age of tuff from the Kunyang Group in central Yunnan: Evidence for Grenvillian orogeny in South China. Chin Sci Bull, 52: 1517–1525

    Article  Google Scholar 

  • Zhang C L, Li Z X, Li X H, Ye H M. 2009. Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: Age, geochemistry, petrogenesis and tectonic implications. J Asian Earth Sci, 35: 167–179

    Article  Google Scholar 

  • Zhang C L, Yang D S, Wang H Y, Dong Y G, Ye H M. 2010. Neopro-terozoic mafic dykes and basalts in the southern margin of Tarim, Northwest China: Age, geochemistry and geodynamic implications. Acta Geol Sin-Engl Ed, 84: 549–562

    Article  Google Scholar 

  • Zhang G W, Guo A L, Wang Y J, Zhang Y P, Liu S F, He D F, Cheng S Y, Lu Y K, Yao A P. 2013. Tectonics of South China continent and its implications. Sci China Earth Sci, 56: 1804–1828

    Article  Google Scholar 

  • Zhang K, Zhu X K, Wood R A, Shi Y, Gao Z F, Poulton S W. 2018. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nat Geosci, 11: 345–350

    Article  Google Scholar 

  • Zhang S, Moldowan J M, Li M W. 2002. The abnormal distribution of the molecular fossils in the pre-Cambrian and Cambrian: Its biological significance. Sci China Ser D-Earth Sci, 45: 193–200

    Article  Google Scholar 

  • Zhang S C, Wang X M, Hammarlund E U, Wang H J, Costa M M, Bjerrum C J, Connelly J N, Zhang B M, Bian L Z, Canfield D E. 2015a. Orbital forcing of climate 1.4 billion years ago. Proc Natl Acad Sci USA, 112: 1406–1413

    Google Scholar 

  • Zhang S C, Wang X M, Wang H J, Hammarlund E U, Su J, Wang Y, Canfield D E. 2017. The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels. Biogeosciences, 14: 2133–2149

    Article  Google Scholar 

  • Zhang S C, Wang X M, Wang H J, He K, Su J. 2015b. Hydrocarbon generation potential, parent material and developmental environment of Proterozoic source rocks (in Chinese). Qingdao: The 15th National Symposium of Organic Geochemistry

    Google Scholar 

  • Zhang S C, Wang X, Wang H, Bjerrum C J, Hammarlund E U, Costa M M, Connelly J N, Zhang B, Su J, Canfield D E. 2016. Sufficient oxygen for animal respiration 1400 million years ago. Proc Natl Acad Sci USA, 113: 1731–1736

    Article  Google Scholar 

  • Zhang S C, Zhang B M, Bian L Z, Jin Z J, Wang D R, Chen J F. 2007. The Xiamaling oil shale generated through Rhodophyta over 800 Ma ago. Sci China Ser D-Earth Sci, 50: 527–535

    Article  Google Scholar 

  • Zhang S C, Zhang B M, Bian L Z, Jin Z J, Wang D R, Zhang X Y, Gao Z Y, Chen J F. 2005. Development constraints of marine source rocks in China (in Chinese). Front Earth Sci, 12: 39–48

    Google Scholar 

  • Zhang S H, Jiang G Q, Han Y G. 2008. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 20: 289–294

    Article  Google Scholar 

  • Zhang S H, Jiang G Q, Zhang J M, Song B, Kennedy M J, Christie-Blick N. 2005. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproter-ozoic glaciations. Geology, 33: 473–476

    Article  Google Scholar 

  • Zhang S H, Zhao Y, Ye H, Hu J M, Wu F. 2013. New constraints on ages of the Chuanlinggou and Tuanshanzi Formations of the Changcheng System in the Yan-Liao area in the northern North China Craton (in Chinese). Acta Petrol Sin, 29: 2481–2490

    Google Scholar 

  • Zhao C L, Li R F, Zhou J S. 1997. Sedimentology and Petroleum Geology of the Meso-and Neo-Proterozoic in North China. Beijing: Geol Pub House

    Google Scholar 

  • Zhao G C, Sun M, Wilde S A, Li S Z. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Sci Rev, 67: 91–123

    Article  Google Scholar 

  • Zhao P, Chen Y, Zhan S, Xu B, Faure M. 2014. The Apparent Polar Wander Path of the Tarim Block (NW China) since the Neoproterozoic and its implications for a long-term Tarim-Australia connection. Pre-cambrian Res, 242: 39–57

    Article  Google Scholar 

  • Zhao T P, Zhai M G, Xia B, Li H M, Zhang Y X, Wan Y S. 2004. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constraints on the initial formation age of the cover of the North China Craton. Chin Sci Bull, 49: 2495–2502

    Article  Google Scholar 

  • Zhao W Z, Hu S Y, Wang Z C, Zhang S C, Wang T S. 2018. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China (in Chinese). Petrol Explor Dev, 45: 1–13

    Article  Google Scholar 

  • Zhou C M, Tucker R, Xiao S H, Peng Z X, Yuan X L, Chen Z. 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 32: 437–440

    Article  Google Scholar 

  • Zhou H R, Wang Z Q. 1999. Feature and tectono-paleogeography evolution of the southern margin of the North China continent in Mesoproterozoic and Neoproterozoic Era (in Chinese). Geoscience, 13: 261–267

    Google Scholar 

  • Zhu M Y, Wang H F. 2011. Neoproterozoic glaciogenic diamictites of the Tarim Block, NW China. In: Arnaud E, Halverson G P, Shields-Zhou G, eds. The Geological Record of Neoproterozoic Glaciations. Geol Soc Lond Memoir, 36: 367–378

    Article  Google Scholar 

  • Zhu S X, Chen H N. 1995. Megascopic multicellular organisms from the 1700-million-year-old Tuanshanzi Formation in the Jixian area, North China. Science, 270: 620–622

    Article  Google Scholar 

  • Zhu S X, Zhu M Y, Knoll A H, Yin Z J, Zhao F C, Sun S F, Qu Y G, Shi M, Liu H. 2016. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China. Nat Commun, 7: 11500

    Article  Google Scholar 

  • Zhuo J W, Jiang X S, Wang J, Cui X Z, Xiong G Q, Lu J Z, Liu J H, Ma M Z. 2013. Opening time and filling pattern of the Neoproterozoic Kangdian Rift Basin, western Yangtze Continent, South China. Sci China Earth Sci, 56: 1664–1676

    Article  Google Scholar 

  • Zou C N, Du J H, Xu C C, Wang Z C, Zhang B M, Wei G Q, Wang T S, Yao G S, Deng S H, Liu J J. 2014. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China (in Chinese). Petrol Explor Dev, 41: 278–293

    Google Scholar 

Download references

Acknowledgements

We thank Professor Donald E. Canfield from University of Southern Denmark for constructive suggestions in paper writing. This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFC0603101), National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2016ZX05004001), National Natural Science Foundation of China (Grant Nos. 41530317, 41602144), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA14010101), and Scientific Research and Technological Development Project of CNPC(Grant No. 2016A-0200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Wang, X., Hu, S. et al. Hydrocarbon generation characteristics and exploration prospects of Proterozoic source rocks in China. Sci. China Earth Sci. 62, 909–934 (2019). https://doi.org/10.1007/s11430-018-9312-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9312-4

Keywords

Navigation