Skip to main content
Log in

Preface: New advances in the integrative stratigraphy and timescale of China

  • Progress
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

A series of major geological and biological events which altered the evolutionary processes of whole biosphere occurred during the earth history. Establishing a high-resolution stratigraphic framework and timescale is essential to understand their tempo and causes. High-resolution biostratigraphy remains the most useful approach and forms the basis of dividing the chronostratigraphic system and making the inter-continental and regional correlation. China possesses nearly complete strata from Ediacaran to Quaternary covering wide palaeogeographic regions and containing abundant well-preserved fossils. Traditional biostratigraphy based on sytematic palaeontology of various fossil groups have played an important role in establishing the GSSPs and improving the International and Chinese Stratigraphic Charts. 11 out of 72 establised GSSPs are located in China. Recently, more high-precision geochronology, chemostratigraphy, cyclostrtatigraphy have been applied for stratigraphy and correlation and important advances have been made in some periods. This volume invited Chinese palaeontologists and stratigraphers to summarize the progresses of stratigraphy and timescale from Ediacaran to Quaternary and intercontinental and regional correlation during the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baresel B, Bucher H, Brosse M, Cordey F, Guodun K, Schaltegger U. 2017. Precise age for the Permian-Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age-depth modeling. Solid Earth, 8: 361–37.

    Article  Google Scholar 

  • Becker R T, Gradstein F M, Hammer O. 2012. Chapter 22—The Devonian period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G, eds. The Geologic Time Scale. Boston: Elsevier. 559–60.

  • Burgess S D, Bowring S A, Shen S Z. 2014. High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci USA, 111: 3316–332.

    Article  Google Scholar 

  • Chen J Y. 2004. The Dawn of Animals (in Chinese). Nanjing: Jiangsu Science and Technology Press. 366

    Google Scholar 

  • Chen J, Xu Y G. 2018. Permian lareg igneous provinces and their impact on palaeonenvironment and biodiversity: Progresses and perspectives (in Chinese). Bull Mineral Petrol Geochem, 36: 374–39.

    Google Scholar 

  • Chen X, Fan J X, Wang W H, Wang H Y, Nie H K, Shi X W, Wen Z D, Chen D Y, Li W J. 2017. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, Central China. Sci China Earth Sci, 60: 1133–114.

    Article  Google Scholar 

  • Chen X, Fan J X, Chen Q, Tang L, Hou X D. 2014. Toward a stepwise Kwangsian orogeny. Sci China Earth Sci, 57: 379–38.

    Article  Google Scholar 

  • Chen X, Melchin M J, Sheets H D, Mitchell C E, Fan J X. 2005. Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from south China. J Paleontol, 79: 842–86.

    Article  Google Scholar 

  • Chen Z, Zhou C M, Xiao S H, Wang W, Guan C G, Hua H, Yuan X L. 2014. New Ediacara fossils preserved in marine limestone and their ecological implications. Sci Rep, 4: 4180

    Article  Google Scholar 

  • Cocks L R M. 1985. The Ordovician-Silurian boundary. Episodes, 8: 98–10.

    Google Scholar 

  • Condon D, Zhu M Y, Bowring S A, Wang W, Yang A H, Jin Y G. 2005. UPb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308: 95–9.

    Article  Google Scholar 

  • Deng C L, Hao Q Z, Guo Z T, Zhu R X. 2018. Quaternary integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9195-4

    Google Scholar 

  • Deng T, Hou S K, Wang S Q. 2018. Neogene integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9155-4

    Google Scholar 

  • Erwin D H, Laflamme M, Tweedt S M, Sperling E A, Pisani D, Peterson K J. 2011. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334: 1091–109.

    Article  Google Scholar 

  • Finney S C. 2013. The reality of GSSPs. Ciêncies de Terra (UNL), 18: 9–1.

    Google Scholar 

  • Gingerich P D. 2006. Environment and evolution through the Paleocene-Eocene thermal maximum. Trends Ecol Evol, 21: 246–25.

    Article  Google Scholar 

  • Gradstein F M, Ogg J G, Schmitz M D, Ogg G M. 2012. The Geologic Time Scale 2012. Amsterdam: Elsevier: 1144

    Google Scholar 

  • Harper D A T, Zhan R B, Jin J. 2015. The Great Ordovician Biodiversification Event: Reviewing two decades of research on diversity’s big bang illustrated by mainly brachiopod data. Palaeoworld, 24: 75–8.

    Article  Google Scholar 

  • Huang D Y. 2015. Yanliao biota and Yashan Movement (in Chinese). Acta Palaeontol Sin, 54: 501–54.

    Google Scholar 

  • Huang D Y. 2018. Jurassic integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9268-7

    Google Scholar 

  • Isozaki Y. 2009. Illawarra reversal: The fingerprint of a superplume that triggered Pangean breakup and the end-Guadalupian (Permian) mass extinction. Gondwana Res, 15: 421–43.

    Article  Google Scholar 

  • Kaiser S I. 2009. The Devonian/Carboniferous boundary stratotype section (La Serre, France) revisited. Newsl Stratigr, 43: 195–20.

    Article  Google Scholar 

  • Kenrick P, Crane P R. 1997. The origin and early evolution of plants on land. Nature, 389: 33–3.

    Article  Google Scholar 

  • Lehrmann D J, Stepchinski L, Altiner D, Orchard M J, Montgomery P, Enos P, Ellwood B B, Bowring S A, Ramezani J, Wang H, Wei J, Yu M, Griffiths J D, Minzoni M, Schaal E K, Li X, Meyer K M, Payne J L. 2015. An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian-Upper Triassic strata of Guandao section, Nanpanjiang Basin, south China. J Asian Earth Sci, 108: 117–13.

    Article  Google Scholar 

  • Ma X P, Gong Y M, Chen D Z, Racki G, Chen X Q, Liao W H. 2016. The Late Devonian Frasnian-Famennian Event in South China—Patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeogr Palaeoclimatol Palaeoecol, 448: 224–24.

    Article  Google Scholar 

  • Martinsson A. 1977. The Silurian-Devonian Boundary. Stuttgart: E. Schweizerbart‘sche Verlagsbuchhandlung. 349

    Google Scholar 

  • Melchin M J, Williams S H. 2000. A restudy of the Akidograptine graptolites from Dob’s Linn and a proposed redefined zonation of the Silurian stratotype. In: Cockle P, Wilson G A, Brock G A, Engerbretsen M J, Simpson A, eds. Geol Soc Australia Abstracts, 61: 63

    Google Scholar 

  • Ovtcharova M, Bucher H, Schaltegger U, Galfetti T, Brayard A, Guex J. 2006. New Early to Middle Triassic U-Pb ages from South China: Calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth Planet Sci Lett, 243: 463–47.

    Article  Google Scholar 

  • Peng S C, Babcock L E, Copper R A. 2012. The Cambrian period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G, eds. The Geologic Time Scale 2012, Vol. 1. Oxford, Amsterdam, Waltham: Elsevier. 437–48.

  • Qie W K, Ma X P, Xu H H, Qiao L, Liang K, Guo W, Song J J, Chen B, Lu J F. 2018. Devonian integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9259-9

    Google Scholar 

  • Rong J Y, Huang B. 2014. Study of mass extinction over the past thirty years: A synopsis (in Chinese). Sci Sin Terrae, 44: 377–40.

    Google Scholar 

  • Rong J Y, Melchin M J, Henry W S, Koren T N, Verniers J. 2008. Report of the restudy of the defined global stratotype of the base of the Silurian System. Episodes, 31: 315

    Google Scholar 

  • Rong J Y, Wang Y, Zhan R B, Fan J X, Huang B, Tang P, Li Y, Zhang X L, Wu R C, Wang G X, Wei X. 2018. Silurian integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9258-0

    Google Scholar 

  • Schmitz M D, Kuiper K F. 2013. High-precision geochronology. Elements, 9: 25–3.

    Article  Google Scholar 

  • Shen S Z, Ramezani J, Chen J, Erwin D H, Zhang H, Xiang L, Schoepfer S D, Henderson C M, Zheng Q F, Bowring S A, Wang Y, Li X H, Wang X D, Yuan D X, Zhang Y C, Mu L, Wang J, Wu Y S. 2018a. A sudden end-Permian mass extinction in South China. GSA Bull, doi: 10.1130/B31909.1

    Book  Google Scholar 

  • Shen S Z, Crowley J L, Wang Y, Bowring S A, Erwin D H, Sadler P M, Cao C Q, Rothman D H, Henderson C M, Ramezani J, Zhang H, Shen Y, Wang X D, Wang W, Mu L, Li W Z, Tang Y G, Liu X L, Liu L J, Zeng Y, Jiang Y F, Jin Y G. 2011. Calibrating the end-Permian mass extinction. Science, 334: 1367–137.

    Article  Google Scholar 

  • Shen S Z, Zhang H, Shi G R, Li W Z, Xie J F, Mu L, Fan J X. 2013. Early Permian (Cisuralian) global brachiopod palaeobiogeography. Gondwana Res, 24: 104–12.

    Article  Google Scholar 

  • Shen S Z, Zhang H, Zhang Y C, Yuan D X, Chen B, He W H, Mu L, Lin W, Wang W Q, Chen J, Wu Q, Cao C Q, Wang Y, Wang X D. 2018b. Permian integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9228-4

    Google Scholar 

  • Shen S Z, Zhang H. 2017. What caused the five mass extinctions? (in Chinese) Chin Sci Bull, 62: 1119–113.

    Google Scholar 

  • Shen S Z, Zhu M Y, Wang X D, Li G X, Cao C Q, Zhang H. 2010. A comparison of the biological, geological events and environmental backgrounds between the Neoproterozoic-Cambrian and Permian-Triassic transitions. Sci China Earth Sci, 53: 1873–188.

    Article  Google Scholar 

  • Shu D G. 2008. Cambrian explosion: Birth of tree of animals. Gondwana Res, 14: 219–24.

    Article  Google Scholar 

  • Tong J N, Chu D L, Liang L, Shu W C, Song H J, Song T, Song H Y, Wu Y Y. 2018. Triassic integrative stratigraphy and time scale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-018-9278-0

    Google Scholar 

  • Tong J N, Zuo J X, Chen Z Q. 2007. Early Triassic carbon isotope excursions from South China: Proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction. Geol J, 42: 371–38.

    Article  Google Scholar 

  • Vandenberghe N, Hilgen F J, Speijer R P, Ogg J G, Gradstein F M, Hammer O, Hollis C J, Hooker J J. 2012. Chapter 28—The Paleogene Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G, eds. The Geologic Time Scale. Amsterdan: Elsevier. 855–92.

  • Wang C S, Hu X M, Huang Y J H Y J, Wagreich M, Scott R, Hay W. 2011. Cretaceous oceanic red beds as possible consequence of oceanic anoxic events. Sediment Geol, 235: 27–3.

    Article  Google Scholar 

  • Wang W Q, Garbelli C, Zheng Q F, Chen J, Liu X C, Wang W, Shen S Z. 2018. Permian 87Sr/86Sr chemostratigraphy from carbonate sequences in South China. Palaeogeogr Palaeoclimatol Palaeoecol, 500: 84–9.

    Article  Google Scholar 

  • Wang X D, Hu K Y, Qie W K, Sheng Q Y, Chen B, Lin W, Yao L, Wang Q L, Qi Y P, Chen J T, Liao Z T, Song J J. 2018. Carboniferous integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9253-7

    Google Scholar 

  • Wang X M, Flynn L J, Fortelius M. 2013. Fossil mammals of Asia: Neogene biostratigraphy and chronology. New York: Columbia University Press. 731

    Book  Google Scholar 

  • Wang Y Q, Li Q, Bai B, Jin X, Mao F Y, Meng J. 2018. Paleocene integrative stratigraphy and time scale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-018-9305-y

    Google Scholar 

  • Xi D P, Wan X Q, Li G B, Li G. 2018. Cretaceous integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9262-y

    Google Scholar 

  • Xiao S H, Narbonne G M, Zhou C M, Laflamme M, Grazhdankin D V, Moczydłowska-Vidal M, Cui H. 2016. Towards an Ediacaran time scale: Problems, protocols, and prospects. Episodes, 39: 540–55.

    Article  Google Scholar 

  • Yu C M. 1988. Devonian-Carboniferous Boundary in Nanbiancun, Guilin, China. Beijing: Science Press. 379

    Google Scholar 

  • Yuan X L, Chen Z, Xiao S H, Zhou C M, Hua H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470: 390–39.

    Article  Google Scholar 

  • Zhang M M, Wang Y Q, Wang Q F, Wang Y, Lu H N. 2001. The Jehol Biota (in Chinese). Shanghai: Shanghai Science and Technology Press. 150

    Google Scholar 

  • Zhang Q H, Wendler I, Xu X X, Willems H, Ding L. 2017. Structure and magnitude of the carbon isotope excursion during the Paleocene-Eocene thermal maximum. Gondwana Res, 46: 114–12.

    Article  Google Scholar 

  • Zhang Y D, Zhan R B, Zhen Y Y, Wang Z H, Yuan W W, Fang X, Ma X, Zhang J P. 2018. Ordovician integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9279-0

    Google Scholar 

  • Zhao W J, Zhu M. 2014. A review of the Silurian fishes from China, with comments on the correlation of fish-bearing strata (in Chinese). Earth Sci Front, 21:185–20.

    Google Scholar 

  • Zhou C M, Yuan X L, Xiao S H, Chen Z, Hua H. 2018. Ediacaran integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9216-2

    Google Scholar 

  • Zhou Z H. 2014. The Jehol Biota, an Early Cretaceous terrestrial Lagerstätte: New discoveries and implications. Nat Sci Rev, 1: 543–55.

    Article  Google Scholar 

  • Zhu M, Zhao W J, Jia L T, Lu J, Qiao T, Qu Q M. 2009. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature, 458: 469–47.

    Article  Google Scholar 

  • Zhu M Y, Li X H. 2017. Introduction: From snowball Earth to the Cambrian explosion-evidence from China. Geol Mag, 154: 1187–119.

    Article  Google Scholar 

  • Zhu M Y, Lu M, Zhang J M, Zhao F C, Li G X, Yang A H, Zhao X, Zhao M J. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Res, 225: 7–2.

    Article  Google Scholar 

  • Zhu M Y, Strauss H, Shields G A. 2007. From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 1–6

    Article  Google Scholar 

  • Zhu M Y, Yang A H, Yuan J L, Li G X, Zhang J M, Zhao F C, Soo-Yeun A, Miao L Y. 2018. Cambrian integrative stratigraphy and time scale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9291-0

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41290260, 41521061), the Strategic Priority Research Program of Chinese Academy Sciences (Grant Nos. XDB26000000, XDB18000000) and the Key Research Program of Frontier Sciences from the Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzhong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, S., Rong, J. Preface: New advances in the integrative stratigraphy and timescale of China. Sci. China Earth Sci. 62, 1–6 (2019). https://doi.org/10.1007/s11430-018-9280-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9280-6

Keywords

Navigation