Skip to main content
Log in

Seismic rock physical modelling for gas hydrate-bearing sediments

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

There are ambiguities and uncertainties in the recognition of gas hydrate seismic reflections and in quantitative predictions of physical information of natural gas hydrate reservoirs from seismic data. Rock physical modelling is a bridge that transforms the seismic information of geophysical observations into physical information, but traditional rock physics models lack descriptions of reservoir microstructures and pore-filling materials. Considering the mineral compositions and pore microstructures of gas hydrates, we built rock physical models for load-bearing and pore-filling gas hydrate-bearing sediments, describe the mineral compositions, pore connectivity and pore shape using effective media theory, calculated the shear properties of pore-filling gas hydrates using Patchy saturation theory and Generalized Gassmann theory, and then revealed the quantitative relation between the elastic parameters and physical parameters for gas hydrate-bearing sediments. The numerical modelling results have shown that the ratios of P-wave and S-wave velocities decrease with hydrate saturation, the P-wave and S-wave velocities of load-bearing gas hydrate-bearing sediments are more sensitive to hydrate saturation, sensitivity is higher with narrower pores, and the ratios of the P-wave and S-wave velocities of pore-filling gas hydrate-bearing sediments are more sensitive to shear properties of hydrates at higher hydrate saturations. Theoretical analysis and practical application results showed that the rock physical models in this paper can be used to calculate the quantitative relation between macro elastic properties and micro physical properties of gas hydrate-bearing sediments, offer shear velocity information lacking in well logging, determine elastic parameters that have more effective indicating abilities, obtain physical parameters such as hydrate saturation and pore aspect ratios, and provide a theoretical basis and practical guidance for gas hydrate quantitative predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai H, Pecher I A, Adam L, Field B. 2016. Possible link between weak bottom simulating reflections and gas hydrate systems in fractures and macropores of fine-grained sediments: Results from the Hikurangi Margin, New Zealand. Mar Pet Geol, 71: 225–237

    Article  Google Scholar 

  • Bao C. 1988. Natural Gas Geology. Beijing: Science Press (in Chinese). 390

    Google Scholar 

  • Berge L I, Jacobsen K A, Solstad A. 1999. Measured acoustic wave velocities of R11 (CCl3F) hydrate samples with and without sand as a function of hydrate concentration. J Geophys Res, 104: 15415–15424

    Article  Google Scholar 

  • Berryman J G. 1995. Mixture theories for rock properties. AGU Reference Shelf, 3: 205–228

    Article  Google Scholar 

  • Brown R J S, Korringa J. 1975. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics, 40: 608–616

    Article  Google Scholar 

  • Carcione J M, Tinivella U. 2000. Bottom-simulating reflectors: Seismic velocities and AVO effects. Geophysics, 65: 54–67

    Article  Google Scholar 

  • Carmichael R S. 1989. CRC Practical Handbook of Physical Properties of Rocks and Minerals. Florida: CRC Press. 741

    Google Scholar 

  • Chand S, Minshull T A, Gei D, Carcione J M. 2004. Elastic velocity models for gas-hydrate-bearing sediments-a comparison. Geophys J Int, 159: 573–590

    Article  Google Scholar 

  • Chen Y F, Li D L, Liang D Q, Zhou X B, Wu N Y. 2013. Relationship between gas hydrate saturation and resistivity in sediments of the South China Sea. Acta Petrol Sin (in Chinese), 34: 507–512

    Article  Google Scholar 

  • Ciz R, Shapiro S A. 2007. Generalization of Gassmann equations for porous media saturated with a solid material. Geophysics, 72: A75–A79

    Article  Google Scholar 

  • Dai J, Xu H, Snyder F, Dutta N. 2004. Detection and estimation of gas hydrates using rock physics and seismic inversion: Examples from the northern deepwater Gulf of Mexico. Lead Edge, 23: 60–66

    Article  Google Scholar 

  • Dallimore S R, Collett T S, Uchida T. 1999. Overview of science program, JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. Bull Geol Surv Can, 544: 11–17

    Google Scholar 

  • Dillon W P, Lee M W, Fehlhaber K, Coleman D F. 1993. Gas hydrates on the Atlantic continental margin of the United States. US Geological Survey Professional Paper, 1570: 313–330

    Google Scholar 

  • Dun T J. 1995. Reservoir research status and development trend (in Chinese). Northwest Geol, 16: 1–15

    Google Scholar 

  • Dutta N C, Dai J. 2009. Exploration for gas hydrates in a marine environment using seismic inversion and rock physics principles. Leading Edge, 28: 792–802

    Article  Google Scholar 

  • Dvorkin J, Nur A. 1993. Rock Physics for characterization of gas hydrates. US Geological Survey Professional Paper, 1570: 293–298

    Google Scholar 

  • Dvorkin J, Nur A. 1996. Elasticity of high-porosity sandstones: Theory for two North Sea data sets. Geophysics, 61: 1363–1370

    Article  Google Scholar 

  • Dvorkin J, Prasad M. 2001. Velocity to porosity transform in marine sediments. Petrophysics, 42: 429–437

    Google Scholar 

  • Ecker C. 2001. Methane hydrate rock physics models for the Blake Outer Ridge. Stanford Exploration Project, 80: 1–18

    Google Scholar 

  • Ecker C, Dvorkin J, Nur A. 1998. Sediments with gas hydrates: Internal structure from seismic AVO. Geophysics, 63: 1659–1669

    Article  Google Scholar 

  • Ecker C, Dvorkin J, Nur A M. 2000. Estimating the amount of gas hydrate and free gas from marine seismic data. Geophysics, 65: 565–573

    Article  Google Scholar 

  • Gassmann F. 1951. Elastic Waves through a packing of spheres. Geophysics, 16: 673–685

    Article  Google Scholar 

  • Gao H Y, Zhong G F, Liang J Q, Guo Y Q. 2012. Estimation of gas hydrate saturation with modified Biot-Gassmann theory: A case from northern South China Sea. Mar Geol Quat Geol, 32: 83–89

    Article  Google Scholar 

  • Helgerud M B, Dvorkin J, Nur A, Sakai A, Collett T. 1999. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophys Res Lett, 26: 2021–2024

    Article  Google Scholar 

  • Helgerud M B, Waite W F, Kirby S H, Nur A. 2009. Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate. J Geophys Res, 114: B02212

    Google Scholar 

  • Hill R. 1963. Elastic properties of reinforced solids: Some theoretical principles. J Mech Phys Solids, 11: 357–372

    Article  Google Scholar 

  • Holbrook W S, Hoskins H, Wood W T, Stephen R A, Lizarralde D, Leg 164 Science Party D. 1996. Methane hydrate and free gas on the blake ridge from vertical seismic profiling. Science, 273: 1840–1843

    Article  Google Scholar 

  • Hu G W, Li C F, Ye Y G, Liu C L, Zhang J, Diao S B. 2014. Observation of gas hydrate distribution in sediment pore space (in Chinese). Chin J Geophys, 5: 1675–1682

    Google Scholar 

  • Jakobsen M, Hudson J A, Minshull T A, Singh S C. 2000. Elastic properties of hydrate-bearing sediments using effective medium theory. J Geophys Res, 105: 561–577

    Article  Google Scholar 

  • Jiang Z X. 2003. Sedimentology (in Chinese). Beijing: Petroleum Industry Press. 180–197

    Google Scholar 

  • Jin S, Nagao J, Takeya S, Jin Y, Hayashi J, Kamata Y, Ebinuma T, Narita H. 2006. Structural investigation of methane hydrate sediments by microfocus X-ray computed tomography technique under high-pressure conditions. Jpn J Appl Phys, 45: L714–L716

    Article  Google Scholar 

  • Kleinberg R L, Flaum C, Griffin D D, Brewer P G, Malby G E, Peltzer E T, Yesinowski J P. 2003. Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability. J Geophys Res, 108: 2508

    Google Scholar 

  • Kvenvolden K A. 1993. A primer of gas hydrates. US Geological Survey Professional Paper, 1570: 555–561

    Google Scholar 

  • Lee M W, Collett T S. 2001. Elastic properties of gas hydrate-bearing sediments. Geophysics, 66: 763–771

    Article  Google Scholar 

  • Lee M W, Hutchinson D R, Collett T S, Dillon W P. 1996. Seismic velocities for hydrate-bearing sediments using weighted equation. J Geophys Res, 101: 20347–20358

    Article  Google Scholar 

  • Lee M W, Waite W F. 2008. Estimating pore-space gas hydrate saturations from well log acoustic data. Geochem Geophys Geosyst, 9: Q07008

    Google Scholar 

  • Li W X, Wang H, Yao Z X, Liu Y K, Chang X. 2009. Shear-wave velocity estimation and fluid substitution by constraint method (in Chinese). Chin J Geophys, 52: 785–791

    Google Scholar 

  • Liu C L, Ye Y G, Meng Q G, He X L, Cheng Q, Hu G W. 2012. Characteristics of gas hydrate samples recovered from Shenhu Area in the South China Sea (in Chinese). J Trop Oceanogr, 31: 1–5

    Google Scholar 

  • Liu J, Liu J P, Cheng F, Wang J, Liu X X. 2017. Rock-physics models of hydrate-bearing sediments in permafrost, Qilian Mountains, China. Appl Geophys, 14: 31–39

    Article  Google Scholar 

  • Liu X W, Li M F, Zhang Y W, Zhang G X, Wu N Y, Huang Y Y, Wang H B. 2005. Studies of seismic characteristics about gas hydrate: A case study of line HDl52 in the South China Sea (in Chinese). Geol Sci, 19: 33–38

    Google Scholar 

  • Lu H, Seo Y T, Lee J W, Moudrakovski I, Ripmeester J A, Chapman N R, Coffin R B, Gardner G, Pohlman J. 2007. Complex gas hydrate from the Cascadia margin. Nature, 445: 303–306

    Article  Google Scholar 

  • Lu H F, Chen H, Chen F, Liao Z L. 2009. Mineralogy of the sediments from gas-hydrate drilling sites, Shenhu area, South China Sea (in Chinese). Research of Eological South China Sea, 20: 28–39

    Google Scholar 

  • Lu S M, McMechan G A. 2002. Estimation of gas hydrate and free gas saturation, concentration, and distribution from seismic data. Geophysics, 67: 582–593

    Article  Google Scholar 

  • Luan X W, Jin Y K, Obzhirov A, Yue B J. 2008. Characteristics of shallow gas hydrate in Okhotsk Sea. Sci China Ser D-Earth Sci, 51: 415–421

    Article  Google Scholar 

  • Mason W P. 1943. Chapter I: Quartz crystal applications. Bell Syst Technical J, 22: 178–223

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media. 2nd ed. New York: Cambridge University Press

    Book  Google Scholar 

  • Miller J J, Lee M W, von Huene R. 1991. An analysis of a seismic reflection from the base of a gas hydrate zone, Offshore Peru. AAPG Bull, 75: 910–924

    Google Scholar 

  • Priest J A, Best A I, Clayton C R I. 2005. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand. J Geophys Res, 110: B04102

    Article  Google Scholar 

  • Qian J, Wang X J, Dong D D, Wu S G, Sain K, Ye Y M. 2016. Quantitative assessment of free gas beneath gas hydrate stability zone from prestack seismic data and rock physics: A case of hole NGHP01-10A, Krishna-Godava basin, India (in Chinese). Chin J Geophys, 59: 2553–2563

    Google Scholar 

  • Qu L, Zou C C, Lu Z Q, Yu C Q, Li N, Zhu J C, Zhang X H, Yue X Y, Gao M Z. 2017. Elastic-wave velocity characterization of gas hydratebearing fractured reservoirs in a permafrost area of the Qilian Mountain, Northwest China. Mar Pet Geol, 88: 1047–1058

    Article  Google Scholar 

  • Russell B H, Hedlin K, Hilterman F J, Lines L R. 2003. Fluid-property discrimination with AVO: A Biot-Gassmann perspective. Geophysics, 68: 29–39

    Article  Google Scholar 

  • Sakai A. 1999. Velocity analysis of vertical seismic profile (VSP) survey at JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, and related problems for estimating gas hydrate concentration. Bull Geol Surv Can, 544: 323–340

    Google Scholar 

  • Sava D, Hardage B A. 2006. Rock physics characterization of hydratebearing deepwater sediments. Leading Edge, 25: 616–619

    Article  Google Scholar 

  • Schultheiss P, Holland M, Humphrey G. 2009. Wireline coring and analysis under pressure: Recent use and future developments of the HYACINTH system. Sci Dril, 7: 44–50

    Article  Google Scholar 

  • Shankar U, Riedel M. 2011. Gas hydrate saturation in the Krishna-Godavari basin from P-wave velocity and electrical resistivity logs. Mar Pet Geol, 28: 1768–1778

    Article  Google Scholar 

  • Shipley T H, Houston M H, Buffler R T, Shaub F J, McMillen K J, Ladd J W, Worzel J L. 1979. Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG Bull, 63: 2204–2213

    Google Scholar 

  • Song H B, Osamu M, Yang S X, Wu N Y, Jiang W W, Hao T Y. 2002. Physical property models of gas hydrate-bearing sediments and AVA character of bottom simulating reflector (in Chinese). Chin J Geophys, 45: 546–556

    Article  Google Scholar 

  • Song H B, Wu S G, Jiang W W. 2007. The characteristics of BSRs and their derived heat flow on the profile 973 in the northeastern South China Sea (in Chinese). Chin J Geophys, 50: 1508–1517

    Google Scholar 

  • Tohidi B, Anderson R, Clennell M B, Burgass R W, Biderkab A B. 2001. Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels. Geology, 29: 867–870

    Article  Google Scholar 

  • Tosaya C, Nur A. 1982. Effects of diagenesis and clays on compressional velocities in rocks. Geophys Res Lett, 9: 5–8

    Article  Google Scholar 

  • Waite W F, Helgerud M B, Nur A, Pinkston J C, Stern L A, Kirby S H, Durham W B. 2000. Laboratory measurements of compressional and shear wave speeds through methane hydrate. Ann New York Acad Sci, 912: 1003–1010

    Article  Google Scholar 

  • Waite W F, Santamarina J C, Cortes D D, Dugan B, Espinoza D N, Germaine J, Jang J, Jung J W, Kneafsey T J, Shin H, Soga K, Winters W J, Yun T S. 2009. Physical properties of hydrate-bearing sediments. Rev Geophys, 47: 465–484

    Article  Google Scholar 

  • Wang J, Sain K, Wang X, Satyavani N, Wu S. 2014. Characteristics of bottom-simulating reflectors for Hydrate-filled fractured sediments in Krishna-Godavari basin, eastern Indian margin. J Pet Sci Eng, 122: 515–523

    Article  Google Scholar 

  • Wang J, Zhao J, Zhang Y, Wang D, Li Y, Song Y. 2016. Analysis of the effect of particle size on permeability in hydrate-bearing porous media using pore network models combined with CT. Fuel, 163: 34–40

    Article  Google Scholar 

  • Wang X, Hutchinson D R, Wu S, Yang S, Guo Y. 2011. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea. J Geophys Res, 116: B05102

    Google Scholar 

  • Wang Y, Chen S, Wang L, Li X Y. 2013. Modeling and analysis of seismic wave dispersion based on the rock physics model. J Geophys Eng, 10: 054001

    Article  Google Scholar 

  • Weger R J, Eberli G P, Baechle G T, Massaferro J L, Sun Y F. 2009. Quantification of pore structure and its effect on sonic velocity and permeability in carbonates. AAPG Bull, 93: 1297–1317

    Article  Google Scholar 

  • Westbrook G K, Chand S, Rossi G, Long C, Bünz S, Camerlenghi A, Carcione J M, Dean S, Foucher J P, Flueh E, Gei D, Haacke R R, Madrussani G, Mienert J, Minshull T A, Nouzé H, Peacock S, Reston T J, Vanneste M, Zillmer M. 2008. Estimation of gas hydrate concentration from multi-component seismic data at sites on the continental margins of NW Svalbard and the Storegga region of Norway. Mar Pet Geol, 25: 744–758

    Article  Google Scholar 

  • Winters W J, Dallimore S R, Collett T S, Katsube T J, Jenner K A, Cranston R E, Wright J F, Nixon F M, Uchida T. 1999. Physical properties of sediments from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI). Bull Geol Surv Can, 544: 95–100

    Google Scholar 

  • Winters W J, Waite W F, Mason D H, Gilbert L Y, Pecher I A. 2007. Methane gas hydrate effect on sediment acoustic and strength properties. J Pet Sci Eng, 56: 127–135

    Article  Google Scholar 

  • Wood W T, Stoffa P L, Shipley T H. 1994. Quantitative detection of methane hydrate through high-resolution seismic velocity analysis. J Geophys Res, 99: 9681–9695

    Article  Google Scholar 

  • Wu N Y, Yang S X, Wang H B, Liang J Q, Gong Y H, Lu Z Q, Wu D D, Guan H X. 2009. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu area, northern South China Sea (in Chinese). Chin J Geophys, 52: 1641–1650

    Google Scholar 

  • Xu S Y, White R E. 1995. A new velocity model for clay-sand mixtures. Geophys Prospect, 43: 91–118

    Article  Google Scholar 

  • Xue J, Gu H M, Cai C G, Li Z J, Zhu D. 2016. Estimation of fracture parameters from P-wave AVOA data based on equivalent media theory (in Chinese). Oil Geophys Prosp, 51: 1171–1179

    Google Scholar 

  • Ye Y G, Liu C L. 2011. Experimental Techniques and Their Applications for Natural Gas Hydrates (in Chinese). Beijing: Geological Publishing House. 88–89

    Google Scholar 

  • Yin X Y, Hua S B, Zong Z Y. 2016. A decoupling approach for differential equivalent equations based on linear approximation (in Chinese). Oil Geophys Prosp, 51: 281–287

    Google Scholar 

  • Yin X Y, Liu X X. 2016. Research status and progress of the seismic rockphysics modeling methods (in Chinese). Geophys Prosp Petrol, 55: 309–325

    Google Scholar 

  • Yin X Y, Zong Z Y, Wu G C. 2015. Research on seismic fluid identification driven by rock physics. Sci China Earth Sci, 58: 159–171

    Article  Google Scholar 

  • Zimmerman R W, King M S. 1986. The effect of the extent of freezing on seismic velocities in unconsolidated permafrost. Geophysics, 51: 1285–1290

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 41706042), the China Postdoctoral Science Foundation (Grant No. 2015M582060), the Special Fund for Land & Resources Scientific Research in the Public Interest (Grant No. 201511037), the National Key Research and Development Program (Grant No. 2017YFC0307400) and the Foundation of Key Laboratory of Submarine Geosciences (Grant No. KLSG1603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yin, X. & Luan, X. Seismic rock physical modelling for gas hydrate-bearing sediments. Sci. China Earth Sci. 61, 1261–1278 (2018). https://doi.org/10.1007/s11430-017-9214-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9214-2

Keywords

Navigation