Skip to main content
Log in

Simulated effects of interactions between ocean acidification, marine organism calcification, and organic carbon export on ocean carbon and oxygen cycles

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Ocean acidification caused by oceanic uptake of anthropogenic carbon dioxide (CO2) tends to suppress the calcification of some marine organisms. This reduced calcification then enhances surface ocean alkalinity and increases oceanic CO2 uptake, a process that is termed calcification feedback. On the other hand, decreased calcification also reduces the export flux of calcium carbonate (CaCO3), potentially reducing CaCO3-bound organic carbon export flux and CO2 uptake, a process that is termed ballast feedback. In this study, we incorporate a range of different parameterizations of the links between organic carbon export, calcification, and ocean acidification into an Earth system model, in order to quantify the long-term effects on oceanic CO2 uptake that result from calcification and ballast feedbacks. We utilize an intensive CO2 emission scenario to drive the model in which an estimated fossil fuel resource of 5000 Pg C is burnt out over the course of just a few centuries. Simulated results show that, in the absence of both calcification and ballast feedbacks, by year 3500, accumulated oceanic CO2 uptake is 2041 Pg C. Inclusion of calcification feedback alone increases the simulated uptake by 629 Pg C (31%), while the inclusion of both calcification and ballast feedbacks increase simulated uptake by 449–498 Pg C (22–24%), depending on the parameter values used in the ballast feedback scheme. These results indicate that ballast effect counteracts calcification effect in oceanic CO2 uptake. Ballast effect causes more organic carbon to accumulate and decompose in the upper ocean, which in turn leads to decreased oxygen concentration in the upper ocean and increased oxygen at depths. By year 2600, the inclusion of ballast effect would decrease oxygen concentration by 11% at depth of ca. 200 m in tropics. Our study highlights the potentially critical effects of interactions between ocean acidification, marine organism calcification, and CaCO3-bound organic carbon export on the ocean carbon and oxygen cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer D. 1991. Modeling the calcite lysocline. J Geophys Res, 96: 17037–17050

    Article  Google Scholar 

  • Archer D. 1996. A data-driven model of the global calcite lysocline. Glob Biogeochem Cycle, 10: 511–526

    Article  Google Scholar 

  • Archer D. 2005. Fate of fossil fuel CO2 in geologic time. J Geophys Res-Oceans, 110: C09S05

    Article  Google Scholar 

  • Archer D, Kheshgi H, Maier-Reimer E. 1997. Multiple timescales for neutralization of fossil fuel CO2. Geophys Res Lett, 24: 405–408

    Article  Google Scholar 

  • Armstrong R A, Lee C, Hedges J I, Honjo S, Wakeham S G. 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res Part II-Top Stud Oceanogr, 49: 219–236

    Article  Google Scholar 

  • Armstrong R A, Peterson M L, Lee C, Wakeham S G. 2009. Settling velocity spectra and the ballast ratio hypothesis. Deep-Sea Res Part IITop Stud Oceanogr, 56: 1470–1478

    Article  Google Scholar 

  • Balch W M, Bowler B C, Drapeau D T, Poulton A J, Holligan P M. 2010. Biominerals and the vertical flux of particulate organic carbon from the surface ocean. Geophys Res Lett, 37: L22605

    Article  Google Scholar 

  • Barker S, Elderfield H. 2002. Foraminiferal calcification response to glacial- interglacial changes in atmospheric CO2. Science, 297: 833–836

    Article  Google Scholar 

  • Barker S, Higgins J A, Elderfield H. 2003. The future of the carbon cycle: Review, calcification response, ballast and feedback on atmospheric CO2. Philos Trans R Soc A-Math Phys Eng Sci, 361: 1977–1999

    Article  Google Scholar 

  • Berelson W M. 2001. Particle settling rates increase with depth in the ocean. Deep-Sea Res Part II-Top Stud Oceanogr, 49: 237–251

    Article  Google Scholar 

  • Broecker W S, Peng T H. 1987. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob Biogeochem Cycle, 1: 15–29

    Article  Google Scholar 

  • Caldeira K, Wickett M E. 2003. Anthropogenic carbon and ocean pH. Nature, 425: 365–365

    Article  Google Scholar 

  • Cao L, Zheng M, Caldeira K. 2016. Simulated effect of deep-sea sedimentation and terrestrial weathering on projections of ocean acidification. J Geophys Res-Oceans, 121: 2641–2658

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A. 2013. Carbon and other biogeochemical cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • Cox P M. 2001. Description of the “TRIFFID” dynamic global vegetation model. Hadley Centre technical note, 24: 1–16

    Google Scholar 

  • Eby M, Zickfeld K, Montenegro A, Archer D, Meissner K J, Weaver A J. 2009. Lifetime of anthropogenic climate change: Millennial time scales of potential CO2 and surface temperature perturbations. J Clim, 22: 2501–2511

    Article  Google Scholar 

  • Emerson S, Bender M. 1981. Carbon fluxes at the sediment-water interface of the deep-sea: Calcium-carbonate preservation. J Mar Res, 39: 139–162

    Google Scholar 

  • Engel A, Thoms S, Riebesell U, Rochelle-Newall E, Zondervan I. 2004. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature, 428: 929–932

    Article  Google Scholar 

  • Feely R A, Sabine C L, Lee K, Berelson W, Kleypas J, Fabry V J, Millero F J. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305: 362–366

    Article  Google Scholar 

  • Francois R, Honjo S, Krishfield R, Manganini S. 2002. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Glob Biogeochem Cycle, 16: 34-1–34-20

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews H D, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K G, Schnur R, Strassmann K, Weaver A J, Yoshikawa C, Zeng N. 2006. Climate-carbon cycle feedback analysis: Results from the C4 MIP model intercomparison. J Clim, 19: 3337–3353

    Article  Google Scholar 

  • Ganachaud A. 2003. Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data. J Geophys Res, 108: 3213

    Article  Google Scholar 

  • Ganachaud A, Wunsch C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data.. Nature, 408: 453–457

    Article  Google Scholar 

  • Gangstø R, Joos F, Gehlen M. 2011. Sensitivity of pelagic calcification to ocean acidification. Biogeosciences, 8: 433–458

    Article  Google Scholar 

  • Gattuso J P, Frankignoulle M, Bourge I, Romaine S, Buddemeier R W. 1998. Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change, 18: 37–46

    Article  Google Scholar 

  • Gehlen M, Bopp L, Aumont O. 2008. Short-term dissolution response of pelagic carbonate sediments to the invasion of anthropogenic CO2: A model study. Geochem Geophys Geosyst, 9: Q02012

    Article  Google Scholar 

  • Gehlen M, Bopp L, Emprin N, Aumont O, Heinze C, Ragueneau O. 2006. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model. Biogeosciences, 3: 521–537

    Article  Google Scholar 

  • Gent P R, Mcwilliams J C. 1990. Isopycnal mixing in ocean circulation models. J Phys Oceanogr, 20: 150–155

    Article  Google Scholar 

  • Gerdes R, Köberle C, Willebrand J. 1991. The influence of numerical advection schemes on the results of ocean general circulation models. Clim Dyn, 5: 211–226

    Article  Google Scholar 

  • Gregory J M, Dixon K W, Stouffer R J, Weaver A J, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus J H, Kamenkovich I V, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov A P, Thorpe R B. 2005. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett, 32: L12703

    Article  Google Scholar 

  • Heinze C. 2004. Simulating oceanic CaCO3 export production in the greenhouse. Geophys Res Lett, 31: L16308

    Article  Google Scholar 

  • Hofmann M, Schellnhuber H J. 2009. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. Proc Natl Acad Sci USA, 106: 3017–3022

    Article  Google Scholar 

  • Howard M T, Winguth A M E, Klaas C, Maier-Reimer E. 2006. Sensitivity of ocean carbon tracer distributions to particulate organic flux parameterizations. Glob Biogeochem Cycle, 20: GB3011

    Article  Google Scholar 

  • Ilyina T, Zeebe R E. 2012. Detection and projection of carbonate dissolution in the water column and deep-sea sediments due to ocean acidification. Geophys Res Lett, 39: L06606

    Article  Google Scholar 

  • Iversen M H, Ploug H. 2010. Ballast minerals and the sinking carbon flux in the ocean: Carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences, 7: 2613–2624

    Article  Google Scholar 

  • Jin X, Gruber N, Dunne J P, Sarmiento J L, Armstrong R A. 2006. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Glob Biogeochem Cycle, 20: GB2015

    Article  Google Scholar 

  • Joos F, Plattner G K, Stocker T F, Marchal O, Schmittner A. 1999. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science, 284: 464–467

    Article  Google Scholar 

  • Key R M, Kozyr A, Sabine C L, Lee K, Wanninkhof R, Bullister J L, Feely R A, Millero F J, Mordy C, Peng T H. 2004. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Glob Biogeochem Cycle, 18: GB4031

    Article  Google Scholar 

  • Klaas C, Archer D E. 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Glob Biogeochem Cycle, 16: 63-1–63-14

    Article  Google Scholar 

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson M J. 2000. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob Biogeochem Cycle, 14: 639–654

    Article  Google Scholar 

  • Lima I D, Lam P J, Doney S C. 2014. Dynamics of particulate organic carbon flux in a global ocean model. Biogeosciences, 11: 1177–1198

    Article  Google Scholar 

  • Lumpkin R, Speer K. 2003. Large-scale vertical and horizontal circulation in the North Atlantic Ocean. J Phys Oceanogr, 33: 1902–1920

    Article  Google Scholar 

  • Meissner K J, Weaver A J, Matthews H D, Cox P M. 2003. The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model. Clim Dyn, 21: 515–537

    Article  Google Scholar 

  • Moore J K, Doney S C, Lindsay K. 2004. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem Cy, 18: GB4028

    Article  Google Scholar 

  • Najjar R G, Jin X, Louanchi F, Aumont O, Caldeira K, Doney S C, Dutay J C, Follows M, Gruber N, Joos F, Lindsay K, Maier-Reimer E, Matear R J, Matsumoto K, Monfray P, Mouchet A, Orr J C, Plattner G K, Sarmiento J L, Schlitzer R, Slater R D, Weirig M F, Yamanaka Y, Yool A. 2007. Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Glob Biogeochem Cycle, 21: GB3007

    Article  Google Scholar 

  • Oka A, Kato S, Hasumi H. 2008. Evaluating effect of ballast mineral on deep-ocean nutrient concentration by using an ocean general circulation model. Glob Biogeochem Cycle, 22: GB3004

    Article  Google Scholar 

  • Orr J C, Najjar R, Sabine C L, Joos F. 1999. Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry. Internal OCMIP Report

    Google Scholar 

  • Pachauri R K, Meyer L A, Barros V R, Broome J, Cramer W, Christ R. 2014. Synthesis report: Summary for policymakers. In: Pachauri R K, Meyer L A, eds. Climate Change 2014: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, 4

  • Pilskaln C H, Lehmann C, Paduan J B, Silver M W. 1998. Spatial and temporal dynamics in marine aggregate abundance, sinking rate and flux: Monterey Bay, central California. Deep-Sea Res Part II-Top Stud Oceanogr, 45: 1803–1837

    Article  Google Scholar 

  • Pinsonneault A J, Matthews H D, Galbraith E D, Schmittner A. 2012. Calcium carbonate production response to future ocean warming and acidification. Biogeosciences, 9: 2351–2364

    Article  Google Scholar 

  • Plattner G K, Joos F, Stocker T F, Marchal O. 2001. Feedback mechanisms and sensitivities of ocean carbon uptake under global warming. Tellus B, 53: 564–592

    Google Scholar 

  • Ragueneau O, Schultes S, Bidle K, Claquin P, Moriceau B. 2006. Si and C interactions in the world ocean: Importance of ecological processes and implications for the role of diatoms in the biological pump. Glob Biogeochem Cycle, 20: GB4S02

    Article  Google Scholar 

  • Ridgwell A, Hargreaves J C. 2007. Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model. Glob Biogeochem Cycle, 21: GB2008

    Article  Google Scholar 

  • Ridgwell A, Hargreaves J C, Edwards N R, Annan J D, Lenton T M, Marsh R, Yool A, Watson A. 2007b. Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. Biogeosciences, 4: 87–104

    Article  Google Scholar 

  • Ridgwell A, Schmidt D N, Turley C, Brownlee C, Maldonado M T, Tortell P, Young J R. 2009. From laboratory manipulations to Earth system models: Scaling calcification impacts of ocean acidification. Biogeosciences, 6: 2611–2623

    Article  Google Scholar 

  • Ridgwell A, Zondervan I, Hargreaves J C, Bijma J, Lenton T M. 2007a. Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback. Biogeosciences, 4: 481–492

    Article  Google Scholar 

  • Riebesell U, Körtzinger A, Oschlies A. 2009. Sensitivities of marine carbon fluxes to ocean change. Proc Natl Acad Sci USA, 106: 20602–20609

    Article  Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell P D, Zeebe R E, Morel F M M. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407: 364–367

    Article  Google Scholar 

  • Sarmiento J L, Gruber N. 2006. Ocean Biogeochemical Dynamics. Princeton and Oxford: Princeton University Press. 73–394

    Google Scholar 

  • Schartau M, Engel A, Schröter J, Thoms S, Völker C, Wolf-Gladrow D. 2007. Modelling carbon overconsumption and the formation of extracellular particulate organic carbon. Biogeosciences, 4: 433–454

    Article  Google Scholar 

  • Schmittner A, Oschlies A, Giraud X, Eby M, Simmons H L. 2005. A global model of the marine ecosystem for long-term simulations: Sensitivity to ocean mixing, buoyancy forcing, particle sinking, and dissolved organic matter cycling. Glob Biogeochem Cycle, 19: GB3004

    Article  Google Scholar 

  • Schmittner A, Oschlies A, Matthews H D, Galbraith E D. 2008. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Glob Biogeochem Cycle, 22: GB1013

    Article  Google Scholar 

  • Schneider B, Bopp L, Gehlen M, Segschneider J, Frölicher T L, Cadule P, Friedlingstein P, Doney S C, Behrenfeld M J, Joos F. 2008. Climateinduced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences, 5: 597–614

    Article  Google Scholar 

  • Simmons H L, Jayne S R, Laurent L C S, Weaver A J. 2004. Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model, 6: 245–263

    Article  Google Scholar 

  • Smethie Jr W M, Fine R A. 2001. Rates of North Atlantic Deep Water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res Part I-Oceanogr Res Pap, 48: 189–215

    Article  Google Scholar 

  • Stouffer R J, Yin J, Gregory J M, Dixon K W, Spelman M J, Hurlin W, Weaver A J, Eby M, Flato G M, Hasumi H, Hu A, Jungclaus J H, Kamenkovich I V, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier W R, Robitaille D Y, Sokolov A, Vettoretti G, Weber S L. 2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim, 19: 1365–1387

    Article  Google Scholar 

  • Sundquist E T. 1990. Influence of deep-sea benthic processes on atmospheric CO2. Philos Trans R Soc A-Math Phys Eng Sci, 331: 155–165

    Article  Google Scholar 

  • Takahashi T, Sutherland S C, Wanninkhof R, Sweeney C, Feely R A, Chipman D W, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker D C E, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson T S, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong C S, Delille B, Bates N R, de Baar H J W. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res Part II-Top Stud Oceanogr, 56: 554–577

    Article  Google Scholar 

  • Talley L D, Reid J L, Robbins P E. 2003. Data-based meridional overturning streamfunctions for the global ocean. J Clim, 16: 3213–3226

    Article  Google Scholar 

  • Thorpe S A. 2007. An Introduction to Ocean Turbulence Preface. Cambridge, New York: Cambridge University Press. 28

    Book  Google Scholar 

  • Weaver A J, Eby M, Wiebe E C, Bitz C M, Duffy P B, Ewen T L, Fanning A F, Holland M M, MacFadyen A, Matthews H D, Meissner K J, Saenko O, Schmittner A, Wang H, Yoshimori M. 2001. The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmosphere-Ocean, 39: 361–428

    Article  Google Scholar 

  • Weber S L, Drijfhout S S, Abe-Ouchi A, Crucifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner B, Peltier W R. 2007. The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Clim Past, 3: 51–64

    Article  Google Scholar 

  • Zhai W, de Zhao H. 2016. Quantifying air–sea re-equilibration-implied ocean surface CO2 accumulation against recent atmospheric CO2 rise. J Oceanogr, 72: 651–659

    Article  Google Scholar 

  • Zhang H, Cao L. 2016. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification. Sci Rep, 6: 20284

    Article  Google Scholar 

  • Zickfeld K, Eby M, Weaver A J, Alexander K, Crespin E, Edwards N R, Eliseev AV, Feulner G, Fichefet T, Forest C E, Friedlingstein P, Goosse H, Holden P B, Joos F, Kawamiya M, Kicklighter D, Kienert H, Matsumoto K, Mokhov I I, Monier E, Olsen S M, Pedersen J O P, Perrette M, Philippon-Berthier G, Ridgwell A, Schlosser A, Schneider Von Deimling T, Shaffer G, Sokolov A, Spahni R, Steinacher M, Tachiiri K, Tokos K S, Yoshimori M, Zeng N, Zhao F. 2013. Long-term climate change commitment and reversibility: An EMIC intercomparison. J Clim, 26: 5782–5809

    Article  Google Scholar 

  • Zondervan I, Zeebe R E, Rost B, Riebesell U. 2001. Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2. Glob Biogeochem Cycle, 15: 507–516

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 41675063, 41422503 & 41276073), the National Key Basic Research Program of China (Grant No. 2015CB953601), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Cao, L. Simulated effects of interactions between ocean acidification, marine organism calcification, and organic carbon export on ocean carbon and oxygen cycles. Sci. China Earth Sci. 61, 804–822 (2018). https://doi.org/10.1007/s11430-017-9173-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9173-y

Keywords

Navigation