Skip to main content
Log in

Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Taklimakan Desert (TD) and Gobi Desert (GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To investigate the contribution of the TD and the GD to dust concentrations in East Asia as a whole, dust emissions, transport, and deposition over the TD and the GD in different seasons from 2007 to 2011 were systematically compared, based on the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Dust emissions, uplift, and long-range transport related to these two dust source regions were markedly different due to differences in topography, elevation, thermal conditions, and atmospheric circulation. Specifically, the topography of the GD is relatively flat, and at a high elevation, and the area is under the influence of two jet streams at high altitudes, resulting in high wind speeds in the upper atmosphere. Deep convective mixing enables the descending branch of jet streams to continuously transport momentum downward to the mid-troposphere, leading to enhanced wind speeds in the lower troposphere over the GD which favors the vertical uplift of the GD dust particles. Therefore, the GD dust was very likely to be transported under the effect of strong westerly jets, and thus played the most important role in contributing to dust concentrations in East Asia. Approximately 35% and 31% of dust emitted from the GD transported to remote areas in East Asia in spring and summer, respectively. The TD has the highest dust emission capabilities in East Asia, with emissions of about 70.54 Tg yr−1 in spring, accounting for 42% of the total dust emissions in East Asia. However, the TD is located in the Tarim Basin and surrounded by mountains on three sides. Furthermore, the dominant surface wind direction is eastward and the average wind speed at high altitudes is relatively small over the TD. As a result, the TD dust particles are not easily transported outside the Tarim Basin, such that most of the dust particles are re-deposited after uplift, at a total deposition rate of about 40 g m−2. It is only when the TD dust particles are uplifted above 4 km, and entrained in westerlies that they begin to undergo a long-range transport. Therefore, the contribution of the TD dust to East Asian dust concentrations was relatively small. Only 25% and 23% of the TD dust was transported to remote areas over East Asia in spring and summer, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belly P Y. 1964. Sand movement by wind. US Army Coastal Eng Res Tech Memo, 1–38

    Google Scholar 

  • Cavazos-Guerra C, Todd M C. 2012. Model simulations of complex dust emissions over the Sahara during the West African monsoon onset. Adv Meteor, 2012: 1–17

    Article  Google Scholar 

  • Chen F, Dudhia J. 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon Weather Rev, 129: 569–585

    Google Scholar 

  • Chen S Y, Huang J P, Kang L T, Wang H, Ma X, He Y, Yuan T, Yang B, Huang Z, Zhang G. 2017. Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi Deserts: Comparison of measurements and model results. Atmos Chem Phys, 17: 2401–2421

    Article  Google Scholar 

  • Chen S Y, Huang J P, Qian Y, Ge J M, Su J. 2014a. Effects of aerosols on autumn precipitation over Mid-eastern China. J Trop Meteorol, 20: 242–250

    Google Scholar 

  • Chen S Y, Huang J P, Zhao C, Qian Y, Leung L R, Yang B. 2013. Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J Geophys Res-Atmos, 118: 797–812

    Article  Google Scholar 

  • Chen S Y, Zhao C, Qian Y, Leung L R, Huang J P, Huang Z W, Bi J R, Zhang W, Shi J S, Yang L, Li D S, Li J X. 2014b. Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem. Aeolian Res, 15: 15–30

    Article  Google Scholar 

  • Cheng T, Chen H, Gu X, Yu T, Guo J, Guo H. 2012. The inter-comparison of MODIS, MISR and GOCART aerosol products against AERONET data over China. J Quant Spectrosc Ra, 113: 2135–2145

    Article  Google Scholar 

  • Diner D J, Hodos R A, Davis A B, Garay M J, Martonchik J V, Sanghavi S V, von Allmen P, Kokhanovsky A A, Zhai P. 2012. An optimization approach for aerosol retrievals using simulated MISR radiances. Atmos Res, 116: 1–14

    Article  Google Scholar 

  • Diner D J, Martonchik J V, Kahn R A, Pinty B, Gobron N, Nelson D L, Holben B N. 2005. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sens Environ, 94: 155–171

    Article  Google Scholar 

  • Eguchi K, Uno I, Yumimoto K, Takemura T, Shimizu A, Sugimoto N, Liu Z. 2009. Trans-pacific dust transport: Integrated analysis of NASA/CALIPSO and a global aerosol transport model. Atmos Chem Phys, 9: 3137–3145

    Article  Google Scholar 

  • Fast J D, Gustafson Jr. W I, Easter R C, Zaveri R A, Barnard J C, Chapman E G, Grell G A, Peckham S E. 2006. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled Meteorology-Chemistry-Aerosol Model. J Geophys Res, 111: D21305

    Article  Google Scholar 

  • Fu Q, Thorsen T J, Su J, Ge J M, Huang J P. 2009. Test of Mie-based single- scattering properties of non-spherical dust aerosols in radiative flux calculations. J Quant Spectrosc Ra, 110: 1640–1653

    Article  Google Scholar 

  • Ge J M, Huang J P, Xu C P, Qi Y L, Liu H Y. 2014. Characteristics of Taklimakan dust emission and distribution: A satellite and reanalysis field perspective. J Geophys Res-Atmos, 119: 11772–11783

    Article  Google Scholar 

  • Ge J M, Su J, Ackerman T P, Fu Q, Huang J P, Shi J S. 2010. Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China-U.S. joint field experiment. J Geophys Res, 115: D00K12

    Article  Google Scholar 

  • Grell G A, Peckham S E, Schmitz R, McKeen S A, Frost G, Skamarock W C, Eder B. 2005. Fully coupled “online” chemistry within the WRF model. Atmos Environ, 39: 6957–6975

    Article  Google Scholar 

  • Ginoux P, Chin M, Tegen I, Prospero J M, Holben B, Dubovik O, Lin S J. 2001. Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res, 106: 20255–20273

    Article  Google Scholar 

  • Ginoux P, Prospero J, Torres O, Chin M. 2004. Long-term simulation of global dust distribution with the GOCART model: Correlation with North Atlantic oscillation. Environ Model Softw, 19: 113–128

    Article  Google Scholar 

  • Gong S L, Zhang X Y, Zhao T L, McKendry I G, Jaffe D A, Lu N M. 2003. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. J Geophys Res, 108: 4262

    Google Scholar 

  • Han Z, Ueda H, Matsuda K, Zhang R, Arao K, Kanai Y, Hasome H. 2004. Model study on particle size segregation and deposition during Asian dust events in March 2002. J Geophys Res, 109: D19205

    Article  Google Scholar 

  • Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev, 134: 2318–2341

    Article  Google Scholar 

  • Huang J P, Fu Q, Su J, Tang Q, Minnis P, Hu Y, Yi Y, Zhao Q. 2009. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos Chem Phys, 9: 4011–4021

    Article  Google Scholar 

  • Huang J P, Fu Q, Zhang W C, Wang X, Zhang R, Ye H, Warren S G. 2011. Dust and black carbon in seasonal snow across northern China. Bull Amer Meteorol Soc, 92: 175–181

    Article  Google Scholar 

  • Huang J P, Guan X, Ji F. 2012. Enhanced cold-season warming in semi-arid regions. Atmos Chem Phys, 12: 5391–5398

    Article  Google Scholar 

  • Huang J P, Lin B, Minnis P, Wang T, Wang X, Hu Y, Yi Y, Ayers J K. 2006a. Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys Res Lett, 33: L19802

    Article  Google Scholar 

  • Huang J P, Minnis P, Chen B, Huang Z, Liu Z, Zhao Q, Yi Y, Ayers J K. 2008. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J Geophys Res, 113: D23212

    Article  Google Scholar 

  • Huang J P, Minnis P, Lin B, Wang T, Yi Y, Hu Y, Sun-Mack S, Ayers K. 2006b. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys Res Lett, 33: L06824

    Google Scholar 

  • Huang J P, Minnis P, Yi Y, Tang Q, Wang X, Hu Y, Liu Z, Ayers K, Trepte C, Winker D. 2007. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys Res Lett, 34: L18805

    Article  Google Scholar 

  • Huang J P, Wang T H, Wang W, Li Z, Yan H. 2014. Climate effects of dust aerosols over East Asian arid and semiarid regions. J Geophys Res-Atmos, 119: 11,398–11,416

    Article  Google Scholar 

  • Huang Z W, Huang J P, Bi J R, Wang G Y, Wang W C, Fu Q, Li Z Q, Tsay S C, Shi J S. 2010. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment. J Geophys Res, 115: D00K15

    Google Scholar 

  • Huneeus N, Schulz M, Balkanski Y, Griesfeller J, Kinne S, Prospero J, Bauer S, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Fillmore D, Ghan S, Ginoux P, Grini A, Horowitz L, Koch D, Krol M C, Landing W, Liu X, Mahowald N, Miller R, Morcrette J J, Myhre G, Penner J E, Perlwitz J, Stier P, Takemura T, Zender C. 2010. Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys Discuss, 10: 23781–23864

    Article  Google Scholar 

  • Jia R, Liu Y Z, Chen B, Zhang Z J, Huang J P. 2015. Source and transportation of summer dust over the Tibetan Plateau. Atmos Environ, 123: 210–219

    Article  Google Scholar 

  • Kahn R A, Gaitley B J. 2015. An analysis of global aerosol type as retrieved by MISR. J Geophys Res-Atmos, 120: 4248–4281

    Article  Google Scholar 

  • Kain J S. 2004. The kain-fritsch convective parameterization: An update. J Appl Meteorol, 43: 170–181

    Article  Google Scholar 

  • Kanayama S, Yabuki S, Zeng F L, Liu M Z, Shen Z B, Liu L C, Yanagisawa F, Abe O. 2005. Size-dependent geochemical characteristics of Asian dust. J Meteorol Soc Jpn, 83A: 107–120

    Article  Google Scholar 

  • Kang L T, Chen S Y. 2017. Numerical modeling study of a dust storm process in Northern China (in Chinese). Atoms Environ, 37: 321–331

    Google Scholar 

  • Kang L T, Huang J P, Chen S Y, Wang X. 2016. Long-term trends of dust events over Tibetan Plateau during 1961–2010. Atmos Environ, 125: 188–198

    Article  Google Scholar 

  • Kim J. 2008. Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965–2004). Atmos Environ, 42: 4778–4789

    Article  Google Scholar 

  • Marticorena B, Bergametti G. 1995. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res, 100: 16415

    Article  Google Scholar 

  • Martonchik J V, Diner D J, Crean K A, Bull M A. 2002. Regional aerosol retrieval results from MISR. IEEE Trans Geosci Remote Sens, 40: 1520–1531

    Article  Google Scholar 

  • Martonchik J V, Diner D J, Kahn R, Gaitley B, Holben B N. 2004. Comparison of MISR and AERONET aerosol optical depths over desert sites. Geophys Res Lett, 31: L16102

    Article  Google Scholar 

  • Morrison H, Curry J A, Khvorostyanov V I. 2005. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J Atmos Sci, 62: 1665–1677

    Article  Google Scholar 

  • Nakano T, Yokoo Y, Nishikawa M, Koyanagi H. 2004. Regional Sr-Nd isotopic ratios of soil minerals in northern China as Asian dust fingerprints. Atmos Environ, 38: 3061–3067

    Article  Google Scholar 

  • Pye K. 1989. Aeolian Dust and Dust Deposites. 2nd ed. San Diego: Academic Press

    Google Scholar 

  • Qian Y, Gong D Y, Fan J W, Leung L R, Bennartz R, Chen D L, Wang W. 2009. Heavy pollution suppresses light rain in China: Observations and modeling. J Geophys Res, 114: D00K02

    Article  Google Scholar 

  • Shao Y, Wyrwoll K H, Chappell A, Huang J, Lin Z, McTainsh G H, Mikami M, Tanaka T Y, Wang X, Yoon S. 2011. Dust cycle: An emerging core theme in Earth system science. Aeolian Res, 2: 181–204

    Article  Google Scholar 

  • Shao Y P, Yang Y, Wang J J, Song Z X, Leslie L M, Dong C H, Zhang Z H, Lin Z H, Kanai Y, Yabuki S, Chun Y. 2003. Northeast Asian dust storms: Real-time numerical prediction and validation. J Geophys Res, 108: 4691–4710

    Article  Google Scholar 

  • Shen Y B, Shen Z B, Du M Y. 2005. Factors affecting on dust emission by wind erosion and their variational characteristics (in Chinese). Plateau Meteorol, 24: 611–616

    Google Scholar 

  • Su J J P, Huang Q, Fu Minnis P, Ge J M, Bi J R. 2008. Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements. Atmos Chem Phys, 8: 2763–2771

    Article  Google Scholar 

  • Sun J, Zhang M, Liu T. 2001. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J Geophys Res, 106: 10325–10333

    Article  Google Scholar 

  • Tesfaye M, Sivakumar V, Botai J, Mengistu Tsidu G. 2011. Aerosol climatology over South Africa based on 10 years of Multiangle Imaging Spectroradiometer (MISR) data. J Geophys Res, 116: D20216

    Article  Google Scholar 

  • Uno I, Yumimoto K, Shimizu A, Hara Y, Sugimoto N, Wang Z, Liu Z, Winker D M. 2008. 3D structure of Asian dust transport revealed by CALIPSO lidar and a 4DVAR dust model. Geophys Res Lett, 35: L06803

    Article  Google Scholar 

  • Wang J, Xu X G, Henze D K, Zeng J, Ji Q, Tsay S C, Huang J P. 2012. Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model. Geophys Res Lett, 39: L08802

    Google Scholar 

  • Wang Q Z, Zhuang G S, Huang K, Liu T N, Lin Y F, Deng C R, Fu Q, Fu J S, Chen J K, Zhang W J, Yiming M. 2016. Evolution of particulate sulfate and nitrate along the Asian dust pathway: Secondary transformation and primary pollutants via long-range transport. Atmos Res, 169: 86–95

    Article  Google Scholar 

  • Wang X, Huang J P, Zhang R D, Chen B, Bi J R. 2010. Surface measurements of aerosol properties over northwest China during ARM China 2008 deployment. J Geophys Res, 115: D00K27

    Google Scholar 

  • Weaver C J, Ginoux P, Hsu N C, Chou M D, Joiner J. 2002. Radiative forcing of Saharan dust: GOCART model simulations compared with ERBE Data. J Atmos Sci, 59: 736–747

    Article  Google Scholar 

  • Yue X, Wang H, Liao H, Fan K. 2010. Direct climatic effect of dust aerosol in the NCAR community atmosphere model version 3 (CAM3). Adv Atmos Sci, 27: 230–242

    Article  Google Scholar 

  • Yue X, Liao H, Tang J P. 2013. Simulation of the direct radiative effect of mineral dust and sea salt aerosols in a doubled Carbon dioxide climate. Atmos Ocean Sci Lett, 6: 343–348

    Article  Google Scholar 

  • Zender C S, Bian H, Newman D. 2003. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J Geophys Res, 108: 4416

    Article  Google Scholar 

  • Zhang B, Tsunekawa A, Tsubo M. 2008. Contributions of sandy lands and stony deserts to long-distance dust emission in China and Mongolia during 2000–2006. Glob Planet Change, 60: 487–504

    Article  Google Scholar 

  • Zhang H, Wang Z, Guo P, Wang Z. 2009a. A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv Atmos Sci, 26: 57–66

    Article  Google Scholar 

  • Zhang H, Ma J H, Zheng Y F. 2009b. A modeling study of global radiative forcing due to dust aerosol (in Chinese). Acta Meteorol Sin, 67: 510–521

    Google Scholar 

  • Zhang J, Reid J S. 2010. A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products. Atmos Chem Phys, 10: 10949–10963

    Article  Google Scholar 

  • Zhang X Y, Gong S L, Zhao T L, Arimoto R, Wang Y Q, Zhou Z J. 2003. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys Res Lett, 30: 2272

    Google Scholar 

  • Zhang Y C, Takahashi M, Guo L. 2008. Analysis of the East Asian subtropical westerly jet simulated by CCSR/NIES/FRCGC coupled climate system model. J Meteorol Soc Jpn, 86: 257–278

    Article  Google Scholar 

  • Zhao C, Chen S, Leung L R, Qian Y, Kok J F, Zaveri R A, Huang J. 2013. Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmos Chem Phys, 13: 10733–10753

    Article  Google Scholar 

  • Zhao C S, Dabu X, Li Y. 2004. Relationship between climatic factors and dust storm frequency in Inner Mongolia of China. Geophys Res Lett, 31: L01103

    Google Scholar 

  • Zhao C, Liu X, Leung L R, Johnson B, McFarlane S A, Gustafson Jr. W I, Fast J D, Easter R. 2010. The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: Modeling sensitivities to dust emissions and aerosol size treatments. Atmos Chem Phys, 10: 8821–8838

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Chun Zhao and Yun Qian for their help for this work. This research was supported by the National Natural Science Foundation of China (Grant No. 41405003), Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 41521004), and the Programme of Introducing Talents of Discipline to Universities (Grant No. B 13045) and the Foundation of Key Laboratory for Semi-Arid Climate Change of the Ministry of Education in Lanzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianPing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Huang, J., Li, J. et al. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci. China Earth Sci. 60, 1338–1355 (2017). https://doi.org/10.1007/s11430-016-9051-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9051-0

Keywords

Navigation