Skip to main content
Log in

Palynostratigraphy and palaeoenvironments around the Albian-Cenomanian boundary interval (OAE1d), North Bulgaria

  • Research Paper
  • Special Topic: Cretaceous greenhouse palaeoclimate and sea-level changes
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The palynological assemblages from two Albian-Cenomanian boundary sections in North Bulgaria are described. The samples analyzed yielded a diverse palynological content including dinoflagellate cysts and miospores. Based on dinocyst nutrient and productivity indices a phase of enhanced nutrient availability and high primary productivity is inferred for the latest Albian interval. The pronounced predominance of peridinioid dinocysts in this interval, namely O. verrucosum, O. scabrosum and especially P. infusorioides is considered to reflect eutrophic conditions. It coincides with the increased phosphorus mass accumulation occurring at the top part of the Upper Albian Dekov Formation. OAE 1d is indicated in the Tolovitsa karst spring section, based on palynofacies dominated by high amounts of granular amorphous organic matter (AOM) related to anoxic environmental conditions. These sections serve as evidence suggesting a relationship between Cretaceous peridinioid cysts (including Palaeohystichphora infusorioides, Ovoidinium verrucosum, O. scabrosum) and anoxic/suboxic conditions and/or high primary productivity. The pollen spectrum inferred relatively stable vegetation patterns of surrounding continental areas during and after the Albian/Cenomanian boundary interval and the times of OAE 1d formation. The hinterland vegetation integrated mainly pteridophyte spores and gymnosperms. The area was part of the Southern Laurasian floral province which was characterized by warm temperate to subtropical humid climate. Angiosperms were still minor part of this vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barron E J, Thompson S L, Schneider S H. 1981. An ice-free Cretaceous? Results from climate model simulations. Science, 212: 501–508

    Article  Google Scholar 

  • Brenner G J. 1976. Middle Cretaceous floral provinces and early migration of angiosperms. In: Beck C B, ed. Origin and Early Evolution of Angiosperms. New York: Columbia University Press. 23–47

    Google Scholar 

  • Bujak J P. 1984. Cenozoic dinoflagellate cysts and Acritarchs from the Bering Sea and Northern North Pacific, DSDP Leg 19. Micropaleontology, 30: 180–212

    Article  Google Scholar 

  • Bujak J P, Williams G L. 1979. Dinoflagellate diversity through time. Mar Micropaleontol, 4: 1–12

    Article  Google Scholar 

  • Dabovski C, Zagorchev I. 2009. Mesozoic evolution and Alpine structure. In: Zagorchev I, Dabovski C, Nikolov T, eds. Geology of Bulgaria. Vol II. Part 5. Mesozoic Geology. Sofia: Academic Publishing House. 600–606

    Google Scholar 

  • Dabovski C, Kamenov B, Sinnyovski D. 2009. Upper Cretaceous geology. In: Zagorchev I, Dabovski C, Nikolov T, eds. Geology of Bulgaria. Vol II. Part 5. Mesozoic Geology. Sofia: Academic Publishing House. 627–638

    Google Scholar 

  • Erbacher J, Thurow J, Littke R. 1996. Evolution patterns of radiolaria and organic matter variations: A new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology, 24: 499–502

    Article  Google Scholar 

  • Foucher J C. 1983. Distribution des kystes de dinoflagelles dans le Cretace moyen et superieur de basin de Paris. Cahiers de Micropaleontologie, 4: 23–41

    Google Scholar 

  • Gale A S, Bown P, Caron M, Crampton J, Crowhurst S J, Kennedy W J, Petrizzo M R, Wray D. 2011. The uppermost Middle and Upper Albian succession at the Col de Palluel, Haute-Alpes, France: An integrated study (ammonites, inoceramid bivalves, planktonic foraminifera, nannofossils, geochemistry, stable oxygen and carbon isotopes, cyclostratigraphy). Cretac Res, 17: 515–606

    Article  Google Scholar 

  • Gradstein F M, Ogg J G, Smith A G, Bleeker W, Lourens L J. 2012. A new geologic time scale with special reference to Precambrian and Neogene. Episodes, 27: 83–100

    Google Scholar 

  • Haq B U. 2014. Cretaceous eustasy revisited. Glob Planet Change, 113: 44–58

    Article  Google Scholar 

  • Hay W W, Floegel S. 2012. New thoughts about the Cretaceous climate and oceans. Earth-Sci Rev, 115: 262–272

    Article  Google Scholar 

  • Herngreen W F G. 1978. A preliminary dinoflagellate zonation of Aptian Cenomanian in the Netherlands. Palinologia, 1: 273–281

    Google Scholar 

  • Hochuli P A. 1981. North Gondwanan floral elements in lower to middle cretaceous sediments of the Southern Alps (Southern Switzerland, Northern Italy). Rev Palaeobotany Palynol, 35: 337–358

    Article  Google Scholar 

  • Ivanov M, Stoykova K, Nikolov T. 1982. Biostratigraphic investigations of the Albian stage in the northern part of Pleven district. Ann Sofia Univ, 72, 1: 79–87

    Google Scholar 

  • Ivanov M, Stoykova K. 1990. Stratigraphy of the Aptian and Albian stage in the central part of the Moesian platform. Geologica Balc, 20: 45–71

    Google Scholar 

  • Jolkichev N. 1989. Stratigraphy of the Epicontinental Type Upper Cretaceous in Bulgaria. Sofia: Sofia University Publishing House. 184

    Google Scholar 

  • Kennedy W J, Gale A S, Lees J A, Caron M. 2004. The global boundary stratotype section and point (GSSP) for the base of the Cenomanian Stage, Mont Risou, Hautes-Alpes, France. Episodes, 27: 21–32

    Google Scholar 

  • Leereveld H. 1995. Dinoflagellate cysts from the Lower Cretaceous Rio Argos succession (SE Spain). LPP Contr Ser, 2: 1–175

    Google Scholar 

  • Leckie R M, Bralower T J, Cashman R. 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17: 13-1–13-29

    Article  Google Scholar 

  • Lewis J, Dodge J D, Powel A J. 1990. Quaternary dinoflagellate cysts from thr upwelling system offshore Peru, Hole 6868, ODP Leg 112. In: Sues E, von Huene R. eds. Proc ODP Sci Res, 112: 323–328

    Google Scholar 

  • Masure E, Vrielynck B. 2009. Late Albian dinoflagellate cyst paleobiogeography as indicator of asymmetric sea surface temperature gradient on both hemispheres with southern high latitudes warmer than northern ones. Mar Micropaleontol, 70: 120–133

    Article  Google Scholar 

  • Minkovska V, Peybernes B, Nikolov T. 2002. Paleogeography and geodynamic evolution of the North-Tethyan margin in Bulgaria from Barremian to Albian. In: 3eme Congres francais de stratigraphie, Lyon, France. 156: 165

    Google Scholar 

  • Nikolov T, Rouskova N, Ivanov M, Minkovska V. 2009. Lower Cretaceous Geology. In: Zagorchev I, Dabovski C, Nikolov T. eds. Geology of Bulgaria. Vol II. Part 5. Mesozoic Geology. Sofia: Academic Publishing House. 623–626

    Google Scholar 

  • Ogg J G, Agterberg F P, Gradstein F M. 2004. The Cretaceous Period. In: Gradstein F, Ogg J G, Smith A, eds. A Geologic Time Scale. Cambridge: Cambridge University Press. 344–383

    Google Scholar 

  • Olde K, Jarvis I, Uličný D, Pearce M A, Trabucho-Alexandre J, Čech S, Gröcke D R, Laurin J, Švábenická L, Tocher B A. 2015. Geochemical and palynological sea-level proxies in hemipelagic sediments: A critical assessment from the Upper Cretaceous of the Czech Republic. Paleogeogr Paleoclimatol Paleoecol, 435: 222–243

    Article  Google Scholar 

  • Pearce M A, Jarvis I, Tocher B A. 2009. The Cenomanian-Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: New insights from the dinocyst and geochemical records. Paleogeogr Paleoclimatol Paleoecol, 280: 207–234

    Article  Google Scholar 

  • Prossl K F. 1990. Dinoflagellaten der Kreide-Unter Hauterive bis Ober Turon-im niedersächsischen Becken. Stratigraphie und Fazies in der Kernbohrung 101 sowie einiger anderer Bohrungen in Nordwestdeutschland. Palaeontographica B, 218: 93–191

    Google Scholar 

  • Powel A J, Dodge J D, Lewis J. 1990. Late Neogene to Pleistocene palynological facies of the Peruvian continental margin upwelling, Leg 112. In: Sues E, von Huene R, eds. Proc ODP Sci Res, 112: 297–321

    Google Scholar 

  • Scott R W, Formolo M, Rush N, Owens J D, Oboh-Ikuenobe F. 2013. Upper Albian OAE 1d event in the Chihuahua Trough, New Mexico, USA. Cretac Res, 46: 136–150

    Article  Google Scholar 

  • Sinnyovski D, Pavlishina P. 2014. Nannoplankton and palynological evidence for the Albian-Cenomanian boundary in Northwest Bulgaria. C R Bulg Acad Sci, 67: 551–556

    Google Scholar 

  • Strasser A, Caron M, Gjermeni M. 2001. The Aptian, Albian and Cenomanian of Roter Sattel, Romandes Prealps, Switzerland: A high-resolution record of oceanographic changes. Cretac Res, 22: 173–199

    Article  Google Scholar 

  • Sloan L C, Barron E J. 1990. “Equable” climates during Earth history? Geology, 18: 489–492

    Article  Google Scholar 

  • Takashima R, Nishi H, Huber B, Leckie R M. 2006. Greenhouse world and the Mesozoic ocean. Oceanography, 19: 64–74

    Article  Google Scholar 

  • Torricelli S. 2000. Lower Cretaceous dinoflagellate cyst and acritarch stratigraphy of the Cismon APTICORE (Southern Alps, Italy). Rev Palaeobotany Palynol, 108: 213–266

    Article  Google Scholar 

  • Tyson R V. 1993. Palynofacies analysis. In: Jenkins D J, ed. Applied Micropalaeontology. Dordrecht: Kluwer Academic Publishers. 153–191

    Chapter  Google Scholar 

  • Tyson R V. 1995. Sedimentary Organic Matter: Organic facies and palynofacies. London: Chapman & Hall. 655

    Book  Google Scholar 

  • Tzankov V. 1960. Stratigraphic investigation of the Jurassic and Cretaceous in Northwest Bulgaria. Contr Geol Bulgaria Ser Stratigr Tectonics, 1: 204–211

    Google Scholar 

  • Williams G L, Brinkhuis H, Pearce M A, Fensome R A, Weegink J W. 2004. Southern Ocean and global dinoflagellate cyst events compared: Index events for the Late Cretaceous-Neogene. In: Exon N F, Kennett J P, Malone M J, eds. Proc ODP Sci Res, 189: 1–99

    Google Scholar 

  • Williams G L, Lentin J K, Fensome R. 1998. The Lentin and Williams index of fossil dinoflagellates. AASP Contr Ser, 34: 1–779

    Google Scholar 

  • Wilson P A, Norris R D. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature, 412: 425–429

    Article  Google Scholar 

Download references

Acknowledgments

I would like to express my gratitude to both reviewers for their constructive comments and useful suggestions. Special thanks are due to Michael Wagreich (University of Vienna) who made important suggestions for improving the manuscript and kindly corrected my English. I am also grateful to R. Scott (University of Tulsa) for his final support and valuable remarks. This work was carried out in the frame of the IGCP Project 609 “Climate-environmental deteriorations during greenhouse phases: Causes and consequences of short-term Cretaceous sea-level changes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polina Pavlishina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlishina, P. Palynostratigraphy and palaeoenvironments around the Albian-Cenomanian boundary interval (OAE1d), North Bulgaria. Sci. China Earth Sci. 60, 71–79 (2017). https://doi.org/10.1007/s11430-016-0067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-0067-2

Keywords

Navigation