Skip to main content
Log in

Hydration effects on crystal structures and equations of state for silicate minerals in the subducting slabs and mantle transition zone

  • Review
  • Special Topic: Water in the Earth’s interior
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

There are potentially huge amounts of water stored in Earth’s mantle, and the water solubilities in the silicate minerals range from tens to thousands of part per minion (ppm, part per million). Exploring water in the mantle has attracted much attention from the societies of mineralogy and geophysics in recent years. In the subducting slab, serpentine breaks down at high temperature, generating a series of dense hydrous magnesium silicate (DHMS) phases, such as phase A, chondrodite, clinohumite, etc. These phases may serve as carriers of water as hydroxyl into the upper mantle and the mantle transition zone (MTZ). On the other hand, wadsleyite and ringwoodite, polymorphs of olivine, are most the abundant minerals in the MTZ, and able to absorb significant amount of water (up to about 3 wt.% H2O). Hence, the MTZ becomes a very important layer for water storage in the mantle, and hydration plays important roles in physics and chemistry of the MTZ. In this paper, we will discuss two aspects of hydrous silicate minerals: (1) crystal structures and (2) equations of state (EoSs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson E H, Brown J M, Slutsky L J, Zaug J. 1997. The elastic constants of San Carlos olivine to 17 GPa. J Geophys Res, 102: 12253–12263

    Article  Google Scholar 

  • Anderson D L. 2007. New Theory of the Earth. Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Bell D R, Rossman G R. 1992. Water in Earth’s mantle: The role of nominally anhydrous minerals. Science, 255: 1391–1397

    Article  Google Scholar 

  • Benz H M, Vidale J E. 1993. Sharpness of upper-mantle discontinuities determined from high-frequency reflections. Nature, 365: 147–150

    Article  Google Scholar 

  • Berry A J, James M. 2001. Refinement of hydrogen positions in synthetic hydroxyl-clinohumite by powder neutron diffraction. Am Miner, 86: 181–184

    Article  Google Scholar 

  • Berry A J, James M. 2002. Refinement of hydrogen positions in natural chondrodite by powder neutron diffraction: Implications for the stability of humite minerals. Mineral Mag, 66: 441–449

    Article  Google Scholar 

  • Berry A J, Hermann J, O’Neil H St.C, Foran G J. 2005. Fingerprinting the water site in mantle olivine. Geology, 33: 869–872

    Article  Google Scholar 

  • Berry A J, Walker A M, Hermann J, O’Neil H St.C, Foran G J, Gale J D. 2007. Titanium substitution mechanism in forsterite. Chem Geol, 242: 176–186

    Article  Google Scholar 

  • Bolfan-Casanova N. 2005. Water in the Earth’s mantle. Mineral Mag, 69: 229–257

    Article  Google Scholar 

  • Cámara F. 1997. New data on the structure of norbergite: Location of hydrogen by X-ray diffraction. Can Mineral, 35: 1523–1530

    Google Scholar 

  • Catti M, Ferraris G, Hull S, Pavese A. 1995. Static compression and H disorder in brucite, Mg (OH)2, to 11 GPa: A powder neutron diffraction study. Phys Chem Miner, 22: 200–206

    Article  Google Scholar 

  • Chopelas A. 1991. Thermal properties of γ-Mg2SiO4 at mantle pressures derived from vibrational spectroscopy: Implications for the mantle at 410 km depth. J Geophys Res, 96: 11817–11829

    Article  Google Scholar 

  • Couvy H, Chen J, Drozd V. 2010. Compressibility of nanocrystalline forsterite. Phys Chem Miner, 37: 343–351

    Article  Google Scholar 

  • Crichton W A, Ross N L. 2002. Equation of state of dense hydrous magnesium silicate phase A, Mg7Si2O8(OH)6. Am Miner, 87: 333–338

    Article  Google Scholar 

  • Down R T, Zha C S, Duffy T S, Finger L W. 1996. The equation of state of Forsterite to 17.2 GPa and effects of pressure media. Am Miner, 81: 51–55

    Article  Google Scholar 

  • Duffy T S, Shu J, Mao H K, Hemley R J. 1995. Single-crystal X-ray diffraction of brucite to 14 GPa. Phys Chem Miner, 22: 277–281

    Article  Google Scholar 

  • Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model. Phys Earth Planet Inter, 25: 297–356

    Article  Google Scholar 

  • Faust J, Knittle E. 1994. Static compression of chondrodite: implications for water in the upper mantle. Geophys Res Lett, 21: 837–838

    Article  Google Scholar 

  • Friedrich A, Lager G A, Kunz M., Chakoumakos B C, Smyth J R, Schultz A J. 2001. Temperature-dependent single-crystal neutron diffraction study of natural chondrodite and clinohumite. Am Miner, 86: 981–989

    Article  Google Scholar 

  • Friedrich A, Lager G A, Ulmer P, Kunz M, Marshall W G. 2002. Highpressure single-crystal X-ray and powder neutron study of F, OH/OD-chondrodite: Compressibility, structure, and hydrogen bonding. Am Miner, 87: 931–939

    Article  Google Scholar 

  • Fu B, Touret J L R, Zheng Y F. 2001. Fluid inclusions in coesite-bearing eclogites and jadeite quartzite at Shuanghe, Dabie Shan, China. J Metamorph Geol, 19: 529–545

    Google Scholar 

  • Fujino K, Takuchi Y. 1978. Crystal chemistry of titanian chondrodite and titanian clinohumite of high-pressure origin. Am Miner, 63: 535–543

    Google Scholar 

  • Fukui T, Ohtaka, O, Suzuki T, Funakoshi K. 2003. Thermal expansion of Mg(OH)2 brucite under high pressure and pressure dependence of entropy. Phys Chem Miner, 17: 416–419

    Google Scholar 

  • Ganskow G, Ballaran T B, Langenhorst F. 2010. Effect of iron on the compressibility of hydrous ringwoodite. Am Miner, 95: 747–753

    Article  Google Scholar 

  • Germán R J, Quintal B M, Tobias M, Guarracino L, Jänicke R, Steeb H, Holliger K. 2015. Energy dissipation of P- and S-Waves in fluid-saturated rocks: An overview focusing on hydraulically connected fractures. J Earth Sci, 26: 785–790

    Article  Google Scholar 

  • Gibbs G V, Ribbe P H. 1969. The crystal structures of the humite minerals: I. Norbergite. Am Miner, 54: 376–390

    Google Scholar 

  • Gibbs G V, Ribbe P H, Anderson C P. 1970. The crystal structure of the humite minerals. II. Chondrodite. Am Miner, 55: 1182–1194

    Google Scholar 

  • Guyot F, Wang Y, Gillet P, Richard Y. 1996. Quasi-harmonic computations of thermodynamic parameters of olivines at high-pressure and high-temperature. A comparison with experiment data. Phys Earth Planet Inter, 98: 17–29

    Article  Google Scholar 

  • Hazen R M. 1993. Comparative compressibilities of silicate spinels: Anomalous behavior of (Mg, Fe)2SiO4. Science, 259: 206–209

    Article  Google Scholar 

  • Hazen R M, Weinberger M B, Yang H, Prewitt C T. 2000. Comparative high-pressure crystal chemistry of wadsleyite, β (Mg1-x Fex)2SiO4, with x=0 and 0.25. Am Miner, 85: 117–120

    Google Scholar 

  • Hirschmann M M, Kohlstedt D. 2012. Water in Earth’s mantle. Phys Today, 65: 40–45

    Article  Google Scholar 

  • Holl C M, Smyth J R, Manghnani M H, Amulele G M, Sekar M, Frost D J, Prakapenka V B, Shen G. 2006. Crystal structure and compression of an iron-bearing Phase A to 33 GPa. Phys Chem Miner, 33: 192–199

    Article  Google Scholar 

  • Holl C M, Smyth J R, Jacobsen S D, Frost D J. 2008. Effect of water on the structure and compressibility of wadsleyite β (Mg2SiO4). Am Miner, 93: 598–607

    Article  Google Scholar 

  • Hushur A, Manghnani M H, Smyth J R, Nestola F, Frost D J. 2009. Crystal chemistry of hydrous forsterite and its vibrational properties up to 41 GPa. Am Miner, 94: 751–760

    Article  Google Scholar 

  • Inoue T, Yurimoto H, Kudoh Y. 1995. Hydrous modified spinel, Mg1.75-SiH0.5O4: A new water reservoir in the mantle transition region. Geophys Res Lett, 22: 117–120

    Article  Google Scholar 

  • Inoue T, Weidner D J, Northrup P A, Parise J B. 1998. Elastic properties of hydrous ringwoodite (γ-phase) in Mg2SiO4. Earth Planet Sci Lett, 160: 107–113

    Article  Google Scholar 

  • Inoue T, Tanimoto Y, Irifune T, Suzuki T, Fukui H, Ohtaka O. 2004. Thermal expansion of wadsleyite, ringwoodite, hydrous wadsleyite, and hydrous ringwoodite. Phys Earth Planet Inter, 143–144: 279–290

    Article  Google Scholar 

  • Jacobsen S D, Demouchy S, Frost D J, Ballaran T B, Kung J. 2005. A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: Oxygen sites for hydrogen storage in Earth’s interior. Am Miner, 90: 61–70

    Article  Google Scholar 

  • Kanzaki M. 1989. High pressure phase relations in the system MgO-SiO2-H2O. EOS, 70: 508

    Google Scholar 

  • Kanzaki M. 1991. Stability of hydrous magnesium silicates in the mantle transition zone. Phys Earth Planet Inter, 66: 307–312

    Article  Google Scholar 

  • Katsura T, Yokoshi S, Song M, Kawabe K, Tsujimura T, Kubo A, Ito E, Tange Y, Tomioka N, Saito K, Nozawa A, Funakoshi K I. 2004. Thermal expansion of Mg2SiO4 ringwoodite at high pressure. J Geophys Res, 109: B12, doi: 10.1029/2004JB003094

  • Katsura T, Shatskiy A, Manthilake M A G M, Zhai S, Fukui H, Yamazaki D, Matsuzaki T, Yoneda A, Ito E, Kuwata A, Ueda A, Nozawa A, Funakoshi K I. 2009a. Thermal expansion of forsterite at high pressures determind by in situ X-ray diffraction: The adiabatic geotherm in the upper mantle. Phys Earth Planet Inter, 174: 86–92

    Article  Google Scholar 

  • Katsura T, Shatskiy A, Manthilake M A G M, Zhai S, Yamazaki D, Matsuzaki T, Yoshino T, Yoneda A, Ito E, Sugita M, Tomioka N, Nozawa A, Funakoshi K I. 2009b. P-V-T relations of wadsleyite determined by in situ X-ray diffraction in a large-volume high-pressure apparatus. Geophys Res Lett, 36: L11307, doi: 10.1029/2009GL038107

  • Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno M, Okuno M, Kobayashi T. 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subduction slab. Proc Natl Acad Sci, 110: 9663–9668

    Article  Google Scholar 

  • Kohlstedt D L, Keppler H, Rubie D C. 1996. Solubility of water in the α, β, and γ phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol, 123: 345–357

    Article  Google Scholar 

  • Kohn S C, Brooker R A, Frost D J, Slesinger A E, Wood B J. 2002. Ordering of hydroxyl defects in hydrous wadsleyite (γ-Mg2SiO4). Am Miner, 87: 293–301

    Article  Google Scholar 

  • Kroll H, Kirfel A, Heinemann R, Barbier B. 2012. Volume thermal expansion and related thermophysical parameters in the Mg, Fe olivine solid-solution series. Eur J Mineral, 24: 935–956

    Article  Google Scholar 

  • Kudoh Y, Takéuchi Y. 1985. The crystal structure of forsterite Mg2SiO4 under high Pressure up to 149 kbar. Z Kristallogr, 171: 291–302

    Google Scholar 

  • Kudoh Y, Inoue Y. 1999. Mg-vacant structural modules and dilution of the symmetry of hydrous wadsleyite, β-Mg2-xSiH2xO4 with 0.00≤x≤0.25. Phys Chem Miner, 26: 382–388

    Article  Google Scholar 

  • Kudoh Y, Nagase T, Sasaki S, Tanaka M, Kanzaki M. 1995. Phase F, a new hydrous magnesium silicate synthesized at 1000°C and 17 GPa: Crystal structure and estimated bulk modulus. Phys Chem Miner, 22: 295–299

    Article  Google Scholar 

  • Kudoh Y, Kuribayashi T, Mizobata H, Ohtani E. 2000. Structure and cation disorder of hydrous ringwoodite, γ-Mg1.89Si0.98H0.30O4. Phys Chem Miner, 27: 474–479

    Article  Google Scholar 

  • Kudoh Y, Kuribayashi T, Kagi H, Sasaki S, Tanaka M. 2002. High-pressure structural study of phase-A, Mg7Si2O8(OH)6 using synchrotron radiation. J Phys Condens Mat, 14: 10491–10495

    Article  Google Scholar 

  • Kudoh Y, Kuribayashi T, Mizobata H, Ohtani E, Sasaki S, Tanaka M. 2007. Pressure dependence of u parameter in ringwoodite up to 7.9 GPa. J Mineral Petrol Sci, 102: 8–11

    Article  Google Scholar 

  • Kunz M, Lager G A, Burgi H B, Fernandez-Diaz M T. 2006. High-temperature single-crystal neutron diffraction study of natural chondrodite. Phys Chem Miner, 33: 17–27

    Article  Google Scholar 

  • Kuribayashi T, Kudoh Y, Kagi H. 2003. Compressibility of phase A, Mg7Si2H6O14 up to 11.2 GPa. J Mineral Petrol Sci, 98: 215–234

    Article  Google Scholar 

  • Kuribayashi T, Kagi H, Tanaka M, Akizuki M, Kudoh Y. 2004. Highpressure single crystal X-ray diffraction and FT-IR observation of natural chondrodite and synthetic OH-chondrodite. J Mineral Petrol Sci, 99: 118–129

    Article  Google Scholar 

  • Kuribayashi T, Tanaka M, Kudoh Y. 2008. Synchrotron X-ray analysis of norbergite Mg2.98Fe0.01Ti0.02Si0.99O4 (OH0.31F1.69) structure at high pressure up to 8.2 GPa. Phys Chem Miner, 35: 559–568

    Article  Google Scholar 

  • Lemarie C, Kohn S C, Brooker R A. 2004. The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite: A polarised infrared spectroscopic study. Contrib Mineral Petrol, 147: 48–57

    Article  Google Scholar 

  • Li B, Liebermann R C, Weidner D J. 1998. Elastic moduli of wadsleyite (b-Mg2SiO4) to 7 Gigapascals and 873 Kelvin. Science, 281: 675–677

    Article  Google Scholar 

  • Li B, Liebermann R C, Weidner D J. 2001. P-V-V P-V S-T measurements on wadsleyite to 7 GPa and 873 K: Implications for the 410-km seismic discontinuity. J Geophys Res, 106: 30579–30591

    Article  Google Scholar 

  • Liu L G. 1986. Phase Transformations in serpentine at high pressures and temperatures and implications for subducting lithosphere. Phys Earth Planet Inter, 42: 255–262

    Article  Google Scholar 

  • Liu F L, Xu Z Q. 2004. Fluid inclusions hidden in coesite-bearing zircons in ultrahigh-pressure metamorphic rocks from southwestern Sulu terrane in eastern China. Chin Sci Bull, 49: 396–404

    Article  Google Scholar 

  • Manghnani M H, Amulele G, Smyth J R, Holl C M, Shen G, Prakapenka V. 2005. Equation of state of hydrous Fo90 ringwoodite to 45 GPa by synchrotron powder diffraction. Mineral Mag, 69: 317–324

    Article  Google Scholar 

  • Manghnani M H, Hushur A, Smyth J R, Nestola F, Dera P, Sekar M, Amulele E, Frost D J. 2013. Compressibility and structural stability of two variably hydrated olivine samples (Fo97Fa3) to 34 GPa by X-ray diffraction and Raman Spectroscopy. Am Miner, 98: 1972–1979

    Article  Google Scholar 

  • Mao Z, Jacobsen S D, Jiang F, Smyth J R, Holl C M, Duffy T S. 2008. Elasticity of hydrous wadsleyite to 12 GPa: Implications for Earth’s transition zone. Geophys Res Lett, 35: L21305, doi: 10.1029/2008GL035618

  • Matveev S, O’Neill H St.C, Ballhaus C, Taylor W R, Green D H. 2001. Effect of silica activity on OH- IR spectra of olivine: Implications for low-SiO2 mantle metasomatism. J Petrol, 42: 721–729

    Article  Google Scholar 

  • Meng Y, Weidner D J, Gwanmesia G D, Liebermann R C, Vaughan M T, Wang Y, Leinenweber K, Pacalo R E, Yeganeh-Haeri A, Zhao Y. 1993. In situ high P-T X ray diffraction studies on three polymorphs (a, b, g) of Mg2SiO4. J Geophys Res, 98: 22199–22207

    Article  Google Scholar 

  • Meng Y, Fei Y, Weidner D J, Gwanmesia G D, Hu J. 1994. Hydrostatic compression of γ-Mg2SiO4 to mantle pressures and 700 K: Thermal equation of state and related thermoelastic properties. Phys Chem Miner, 21: 407–412

    Article  Google Scholar 

  • Mosenfelder J L, Deligne N I, Asimow P D, Rossman G R. 2006. Hydrogen incorporation in olivine from 2 to 12 GPa. Am Miner, 91: 285–294

    Article  Google Scholar 

  • Nagai T, Hattori T, Yamanaka T. 2000. Compression mechanism of brucite: An investigation by structural refinement under pressure. Am Miner, 85: 760–764

    Article  Google Scholar 

  • Ni H W, Liu Y, Wang L, Zhang Y. 2009. Water speciation and diffusion in haploandesitic melts at 743-873 K and 100 MPa. Geochim Cosmochim Acta, 73: 3630–3641

    Article  Google Scholar 

  • Ni H W, Xu Z, Zhang Y. 2013. Hydroxyl and molecular H2O diffusivity in a haploandesitic melt. Geochim Cosmochim Acta 103: 36–48

    Article  Google Scholar 

  • Nolet G, Grand S P, Kennett B L. 1994. Seismic heterogeneity in the upper mantle. J Geophys Res, 99: 23753–23766

    Article  Google Scholar 

  • Ohtani E. 2005. Water in the mantle. Elements 1:25–30

    Article  Google Scholar 

  • Ohtani E, Mizobata H, Kudoh Y, Nagase T. 1997. A new hydrous silicate, a water reservoir, in the upper part of the lower mantle. Geophys Res Lett, 24: 1047–1050

    Article  Google Scholar 

  • Ohtani E, Toma M, Litasov K, Kubo T, Suzuki A. 2001. Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle. Phys Earth Planet Inter, 124: 105–117

    Article  Google Scholar 

  • Otsuka K, Karato S I. 2011. Control of the water fugacity at high pressures and temperatures: Applications to the incorporation mechanisms of water in olivine. Phys Earth Planet Inter, 189: 27–33

    Article  Google Scholar 

  • Ottolini L, Cmara F, Bigi S. 2000. An investigation of matrix effects in the analysis of fluorine in humite-group minerals by EMPA, SIMS, and SREF. Am Miner, 85: 89–102

    Article  Google Scholar 

  • Panero W R. 2010. First principles determination of the structure and elasticity of hydrous ringwoodite. J Geophys Res, 115: B03203, doi: 10.1029/2008JB06282

  • Pawley A R, Redfern S A T, Wood B J. 1995. Thermal expansivities and compressibilities of hydrous phases in the system MgO-SiO2-H2O: Talc, phase A and 10-Å phase. Contrib Mineral Petrol, 122: 301–307

    Article  Google Scholar 

  • Pearson D G, Brenker F E, Nestola F, McNeil J, Nasdala, L., Hutchison, M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507: 221–224

    Article  Google Scholar 

  • Purevjav N, Okuchi T, Tomioka N, Abe J, Harjo S. 2014. Hydrogen site analysis of hydrous ringwoodite in mantle transition zone by pulsed neutron diffraction. Geophys Res Lett, 41: 6718–6724, doi: 10.1002/2014GL061448

    Article  Google Scholar 

  • Ribbe P H, Gibbs G V. 1971. Crystal structures of the humite minerals: III. Mg/Fe Ordering in humite and its relation to other ferromagnesian silicates. Am Miner, 56: 1155–1173

    Google Scholar 

  • Ringwood A E. 1966. The chemical composition and origin of the Earth. In: Hurley P M, ed. Advances in Earth Science. Cambridge: M.I.T. Press. 287–356

    Google Scholar 

  • Ringwood A E, Major A. 1967. High-pressure reconnaissance investigations in system Mg2SiO4-MgO-H2O. Earth Planet Sci Lett, 2: 130–133

    Article  Google Scholar 

  • Robinson K, Gibbs G V, Ribbe P H. 1973. The crystal structure of the humite minerals IV. Clinohumite and Titanoclinohumite. Am Miner, 58: 43–49

    Google Scholar 

  • Ross N L, Crichton W A. 2001. Compression of synthetic hydroxylclinohumite [Mg9Si4O16(OH)2] and hydroxylchondrodite [Mg5Si2O8(OH)2]. Am Miner, 86: 990–996

    Article  Google Scholar 

  • Sasaki S, Prewitt C T, Sato Y, Ito E. 1982. Single-crystal X-ray study of gamma Mg2SiO4. J Geophys Res, 87: 7829–7832

    Article  Google Scholar 

  • Schmandt B, Jacobsen S D, Becker T W, Liu Z, Dueker K G. 2014. Dehydration melting at the top of the lower mantle. Science, 344: 1265–1268

    Article  Google Scholar 

  • Shen A, Keppler H. 1995. Infrared spectroscopy of hydrous silicate melts to 1000°C and 10 kbars: Direct observation of water speciation in a diamond anvil cell. Am Miner, 80: 1335–1338

    Article  Google Scholar 

  • Shen T, Hermann J, Zhang L, Padron-Navarta J A, Chen J. 2014. FTIR spectroscopy of Ti-chondrodite, Ti-clinohumite and olivine in deeply subducted serpentinites and implications for the deep water cycle. Contrib Mineral Petrol, 167, doi: 10.1007/s00410-014-0992-8

    Google Scholar 

  • Smyth J R. 1987. β-Mg2SiO4: A potential host for water in the mantle? Am Miner, 72: 1051–1055

    Google Scholar 

  • Smyth J R. 1994. A crystallographic model for hydrous wadsleyite: An ocean in the Earth’s interior? Am Miner, 79: 1021–1025

    Google Scholar 

  • Smyth J R, Jacobsen S D. 2006. Nominally anhydrous minerals and Earth’s deep water cycle, In: Jacobsen S D, van der Lee S, eds. Monograph Series. Washington D.C: American Geophysical Union

    Google Scholar 

  • Smyth J R, Holl C M, Frost D J, Jacobsen S D, Langenhorst F, McCammon C A. 2003. Structural sytematics of hydrous ringwoodite and water in the Earth’s interior. Am Miner, 88: 1402–1407

    Article  Google Scholar 

  • Smyth J R, Holl C M, Frost D J, Jacobsen S D. 2004. High pressure crystal chemistry of hydrous ringwoodite and water in the Earth’s interior. Phys Earth Planet Inter, 143–144: 271–278

    Article  Google Scholar 

  • Smyth J R, Frost D J, Nestola F, Holl C M, Bromiley G. 2006. Olivine hydration in the deep upper mantle: Effects of temperature and silica activity. Geophys Res Lett, 33: L15301, doi: 10.1029/2006GL02619

  • Stolper E M. 1982. The speciation of water in silicate melts. Geochim Cosmochim Acta, 46: 2609–2620

    Article  Google Scholar 

  • Su W, You Z D, Cong B L, Ye K, Zhong Z Q. 2002. Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology, 30: 611–614

    Article  Google Scholar 

  • Suzuki I, Ohtani E, Kumazawa M. 1979. Thermal expansion of γ-Mg2SiO4. J Phys Earth, 23: 145–159

    Article  Google Scholar 

  • Suzuki I, Ohtani E, Kumazawa M. 1980. Thermal expansion of modified spinel, γ-Mg2SiO4. J Phys Earth, 27: 53–61

    Article  Google Scholar 

  • Trots D M, Kurnosov A, Ballaran T B, Frost D J. 2012. High-temperature structural behaviors of anhydrous wadsleyite and forsterite. Am Miner, 97: 1582–1590

    Article  Google Scholar 

  • Tschauner O, Ma C, Beckett J R, Prescher C, Prakapenka V B, Rossman G R. 2014. Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346: 1100–1102

    Article  Google Scholar 

  • Walker A M, Hermann J, Berry A J, O’Neill H St.C. 2007. Three water sites in upper mantle olivine and the role of titanium in the water weakening mechanism. J Geophys Res, 112: B05211, doi: 10.1029/2006JB004620

  • Wang J, Sinogeiking S V, Inoue T, Bass J D. 2006. Elastic properties of hydrous ringwoodite at high-pressure conditions. Geophys Res Lett, 33: L14308, doi: 10.1029/2006GL026441

  • Wang Y B, Shen G Y. 2014. High-pressure experimental studies on Geo-Liquids using synchrotron radiation at the advanced photon source. J Earth Sci, 25: 939–958

    Article  Google Scholar 

  • Weidner D J, Wang Y. 2000. Phase transformations: Implications for mantle structure. Earth’s deep interior: Mineral physics and tomography, from the atomic to the global scale. Geophys Monog Ser, 117: 215–235

    Google Scholar 

  • Williams Q, Hemley R J. 2001. Hydrogen in the deep earth. Annu Rev Earth Planet Sci, 29: 365–418

    Article  Google Scholar 

  • Wunder B. 1998. Equilibrium experiments in the system MgO-SiO2-H2O (MSH): Stability fields of clinohumite-OH [Mg9Si4O16(OH)2], chondrodite-OH [Mg5Si2O8(OH)2] and phase A [Mg7Si2O8(OH)6]. Contrib Mineral Petrol, 132: 111–120

    Article  Google Scholar 

  • Wunder B, Medenbach O, Daniels P, Schreyer W. 1995. First synthesis of the hydroxyl end-member of humite, Mg7Si3O12(OH)2. Am Miner, 80: 638–640

    Google Scholar 

  • Xu L, Sun X, Zhai W, Liang J, Liang Y, Shen K, Zhang Z M, Tang Q. 2006. Fluid inclusions in quartz veins from HP-UHP metamorphic rocks, Chinese Continental Scientific Drilling (CCSD) project. Int Geol Rev, 48: 639–649

    Article  Google Scholar 

  • Yamamoto K. 1977. The crystal structure of hydroxyl-chondrodite. Acta Crystallogr, B33: 1481–1485

    Article  Google Scholar 

  • Yamamoto K, Akimoto S. 1977. The system MgO-SiO2-H2O at high pressures and temperatures-stability field for hydroxyl-chondrodite, hydroxylclinohumite and 10 Å-phase. Am J Sci, 277: 288–312

    Article  Google Scholar 

  • Ye Y, Schwering R A, Smyth J R. 2009. Effects of hydration on thermal expansion of forsterite, wadsleyite, and ringwoodite at ambient pressure. Am Miner, 94: 899–904

    Article  Google Scholar 

  • Ye Y, Smyth J R, Hushur A, Manghnani M H, Lonappan D, Dera P, Frost D J. 2010. Crystal structure of hydrous wadsleyite with 2.8% H2O and compressibility to 60 GPa. Am Miner, 95: 1765–1772

    Article  Google Scholar 

  • Ye Y, Smyth J R, Frost D J. 2011. Structural study of the coherent dehydration of wadsleyite. Am Miner, 96: 1760–1767

    Article  Google Scholar 

  • Ye Y, Brown D A, Smyth J R, Panero W R, Jacobsen S D, Chang Y-Y, Townsend J P, Thomas S-M, Hauri E H, Dera P, Forst D J. 2012. Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt% H2O. Am Miner, 97: 573–582

    Article  Google Scholar 

  • Ye Y, Smyth J R, Jacobsen S D, Goujon C. 2013. Crystal chemistry, thermal expansion, and Raman spectra of hydroxyl-clinohumite: Implications for water in Earth’s interior. Contrib Mineral Petrol, 165: 563–574

    Article  Google Scholar 

  • Ye Y, Jacobsen S D, Mao Z, Duffy T D, Hirner S M, Smyth J R. 2015. Crystal structure, thermal expansivity and elasticity of OH-chondrodite: Trends Among dense hydrous magnesium silicates. Contrib Mineral Petrol, 169: 43, doi: 10.1007/s00410-015-1138-3

    Article  Google Scholar 

  • Yusa H, Inoue T. 1997. Compressibility of hydrous wadsleyite (β-phase) in Mg2SiO4 by high pressure X-ray diffraction. Geophys Res Lett, 24: 1831–1834

    Article  Google Scholar 

  • Yusa H, Inoue T, Ohishi Y. 2000. Isothermal compressibility of hydrous ringwoodite and its relation to the mantle discontinuities. Geophys Res Lett, 27: 413–416

    Article  Google Scholar 

  • Zhang Y, Stolper E M. 1991. Water diffusion in a basaltic melt. Nature, 351: 306–309

    Article  Google Scholar 

  • Zhang Y, Stolper E M, Wasserburg G J. 1991. Diffusion of water in rhyolitic glasses. Geochim Cosmochim Acta, 55: 441–456

    Article  Google Scholar 

  • Zhao Y, Ginsber S B, Kohstedt D L. 2004. Solubility of hydrogen in olivine: Dependence on temperature and iron content. Contrib Mineral Petrol, 147: 155–161

    Article  Google Scholar 

  • Zheng Y F. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. J Geol Soc London, 166: 763–782

    Article  Google Scholar 

  • Zheng Y F. 2012. Metamorphic chemical geodynamic in continental subduction zones. Chem Geol, 328: 5–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y. Hydration effects on crystal structures and equations of state for silicate minerals in the subducting slabs and mantle transition zone. Sci. China Earth Sci. 59, 707–719 (2016). https://doi.org/10.1007/s11430-015-5260-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5260-x

Keywords

Navigation