Skip to main content
Log in

Rapid earthquake focal mechanism inversion using high-rate GPS velometers in sparse network

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

In this study, we demonstrate an approach for inverting earthquake source parameters based on high-rate global positioning system (GPS) velocity seismograms. The velocity records obtained from single-station GPS velocity solutions with broadcast ephemeris are used directly for earthquake source parameter inversion using the Cut and Paste method, without requiring conversion of the velocity records into displacement records. Taking the El Mayor-Cucapah earthquake as an example, GPS velocity records from 10 stations with reasonable azimuthal coverage provide earthquake source parameters very close to those from the Global centroid moment tensor (Global CMT) solution. In sparse network tests, robust source parameters with acceptable bias can be achieved with as few as three stations. When the number of stations is reduced to two, the bias in rake angle becomes appreciable, but the magnitude and strike estimations are still robust. The results of this study demonstrate that rapid and reliable estimation of earthquake source parameters can be obtained from GPS velocity data. These parameters could be used for early earthquake warning and shake map construction, because such GPS velocity records can be obtained in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen R M, Ziv A. 2011. Application of real-time GPS to earthquake early warning. Geophys Res Lett, 38: L16310, doi: 10.1029/2011GL047947

  • Avallone A, Marzario M, Cirella A, Piatanesi A, Rovelli A, Di Alessandro C, D’Anastasio E, D’Agostino N, Giuliani R, Mattone M. 2011. Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: The case of the M w6.3 L’Aquila (central Italy) event. J Geophys Res, 116: B02305, doi: 10.1029/2010JB007834

  • Böhm J, Heinkelmann R, Schuh H. 2007. Short Note: A global model of pressure and temperature for geodetic applications. J Geodesy, 81: 679–683

    Article  Google Scholar 

  • Böhm J, Niell A, Tregoning P, Schuh H. 2006. Global mapping function (GMF): A new empirical mapping function based on numerical weather model data. Geophys Res Lett, 33: L07304, doi: 10.1029/2005GL025546

  • Bilich A, Cassidy J F, Larson K M. 2008. GPS seismology: Application to the 2002 M w 7.9 Denali Fault earthquake. Bull Seismol Soc Amer, 98: 593–606

    Article  Google Scholar 

  • Blewitt G, Kreemer C, Hammond W C, Plag H P, Stein S, Okal E. 2006. Rapid determination of earthquake magnitude using GPS for tsunami warning systems. Geophys Res Lett, 33: L11309, doi: 10.1029/2006GL026145

  • Bock Y, Nikolaidis R M, de Jonge P J, Bevis M. 2000. Instantaneous geodetic positioning at medium distances with the global positioning system. J Geophys Res, 105: 28223–28253

    Article  Google Scholar 

  • Bock Y, Prawirodirdjo L, Melbourne T I. 2004. Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network. Geophys Res Lett, 31: L06604, doi: 10.1029/2003GL019150

  • Bock Y, Melgar D, Crowell B W. 2011. Real-time strong-motion broadband displacements from collocated GPS and accelerometers. Bull Seismol Soc Amer, 101: 2904–2925

    Article  Google Scholar 

  • Branzanti M, Colosimo G, Crespi M, Mazzoni A. 2013. GPS near-realtime coseismic displacements for the great Tohoku-Oki earthquake. IEEE Trans Geosci Remote Sensing, 10: 372–376

    Article  Google Scholar 

  • Colosimo G, Crespi M, Mazzoni A. 2011. Real-time GPS seismology with a stand-alone receiver: A preliminary feasibility demonstration. J Geophys Res, 116: B11302, doi: 10.1029/2010JB007941

  • Crowell B, Bock Y, Squibb M. 2009. Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks. Seismol Res Letts, 80: 772–782

    Article  Google Scholar 

  • Crowell B W, Bock Y, Melgar D. 2012. Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment. Geophys Res Lett, 39: L09305, doi: 10.1029/2012GL051318

  • Delouis B, Nocquet J M, Vallée M. 2010. Slip distribution of the February 27, 2010 M w=8.8 Maule Earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophys Res Lett, 37: L17305, doi:10.1029/2010GL043899

  • Duputel Z, Rivera L, Kanamori H, Hayes G, Hirsorn B, Weinstein S. 2011. Real-time W Phase inversions during the 2011 Tohoku-oki earthquake. Earth Planets Space, 63: 535–539

    Article  Google Scholar 

  • Elósegui P, Davis J L, Oberlander D, Baena R, Ekström G. 2006. Accuracy of high-rate GPS for seismology. Geophys Res Lett, 33: L11308, doi: 10.1029/2006GL026065

  • Emore G L, Haase J S, Choi K, Larson K M, Yamagiwa A. 2007. Recovering seismic displacements through combined use of 1-Hz GPS and strong-motion accelerometers. Bull Seismol Soc Amer, 97: 357–378

    Article  Google Scholar 

  • Guo A Z, Wang Y, Li Z W, Ni S D, Wu W B, Liu G Y, Zheng Y, Simons M. 2013. Observation of core phase ScS from the Mw9.0 Tohoku-Oki earthquake with High-Rate GPS. Seismol Res Lett, 84: 594–599

    Article  Google Scholar 

  • Herring T, King R, McClusky S. 2006. GAMIT reference manual. GPS Analysis at MIT, Release 10: 36

    Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E. 2008. GNSS-Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Wien-NewYork: Springer

    Google Scholar 

  • Hung H K, Rau R J. 2013. Surface waves of the 2011 Tohoku earthquake: Observations of Taiwan’s dense high-rate GPS network. J Geophys Res, 118: 332–345

    Article  Google Scholar 

  • Irwan M, Kimata F, Hirahara K, Sagiya T, Yamagiwa T. 2004. Measuring ground deformation with 1-Hz GPS data: The 2003 Tokachi-oki earthquake (preliminary report). Earth Planets Space, 56: 389–393

    Article  Google Scholar 

  • Ji C, Larson K M, Tan Y, Hudnut K W, Choi K. 2004. Slip history of the 2003. San Simeon earthquake constrained by combining 1-Hz GPS, strong motion, and teleseismic data. Geophys Res Lett, 31: L17608, doi: 10.1029/2004GL020448

  • Larson K M, Bodin P, Gomberg J. 2003. Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science, 300: 1421–1424

    Article  Google Scholar 

  • Larson K M, Bilich A, Axelrad P. 2007. Improving the precision of high-rate GPS. J Geophys Res, 112: B05422, doi: 10.1029/2006JB004367

  • Li X, Ge M, Guo B, Wickert J, Schuh H. 2013a. Temporal point positioning approach for real-time GNSS seismology using a single receiver. Geophys Res Lett, 40: 5677–5682

    Article  Google Scholar 

  • Li X, Ge M, Zhang X, Zhang Y, Guo B, Wang R, Klotz J, Wickert J. 2013b. Real-time high-rate co-seismic displacement from ambiguityfixed precise point positioning: Application to earthquake early warning. Geophys Res Lett, 40: 295–300

    Article  Google Scholar 

  • Li X, Ge M, Lu C, Zhang Y, Wang R, Wickert J, Schuh H. 2014. High-rate GPS seismology using real-time precise point positioning with ambiguity resolution. IEEE Trans Geosci Remote Sensing, 52: 6165–6180

    Article  Google Scholar 

  • Liu Z, Owen S, Moore A. 2014. Rapid estimate and modeling of permanent coseismic displacements for large earthquakes using high-rate global positioning system data. Seismol Res Lett, 85: 284–294

    Article  Google Scholar 

  • Melgar D, Bock Y, Crowell B W. 2012. Real-time centroid moment tensor determination for large earthquakes from local and regional displacement records. Geophys J Int, 188: 703–718

    Article  Google Scholar 

  • Melgar D, Crowell B W, Bock Y, Haase J S. 2013. Rapid modeling of the 2011 Mw 9.0 Tohoku-oki earthquake with seismogeodesy. Geophys Res Lett, 40: 2963–2968

    Article  Google Scholar 

  • Minson S E, Murray J R, Langbein J O, Gomberg J S. 2014. Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data. J Geophys Res, 119: 3201–3231

    Article  Google Scholar 

  • Misra P, Enge P. 2006. Global Positioning System: Signals, Measurements and Performance. Second Edition. MA: Ganga-Jamuna Press

    Google Scholar 

  • Nikolaidis R M, Bock Y, de Jonge P J, Shearer P, Agnew D C, Van Domselaar M. 2001. Seismic wave observations with the Global PositioningSystem. J Geophys Res, 106: 21897–21916

    Article  Google Scholar 

  • O’Toole T, Valentine A P, Woodhouse J H. 2012. Centroid-moment tensor inversions using high-rate GPS waveforms. Geophys J Int, 191: 257–270

    Article  Google Scholar 

  • Schwahn W, Söhne W. 2009. Modified sidereal filtering-tool for the analysis of high-rate GPS coordinate time series. In: Drewes H, ed. Geodetic Reference Frames. Berlin: Springer. 219–224

    Chapter  Google Scholar 

  • Shaw J H, Shearer P M. 1999. An elusive blind thrust fault beneath metropolitan Los Angeles. Science, 283: 1516–1518

    Article  Google Scholar 

  • Tan Y, Zhu L, Helmberger D V, Saikia C K. 2006. Locating and modeling regional earthquakes with two stations. J Geophys Res, 111: B01306, doi: 10.1029/2005JB003775

  • Tu R. 2014. Fast determination of displacement by PPP velocity estimation. Geophys J Int, 196: 1397–1401

    Article  Google Scholar 

  • Wang G Q, Boore D M, Tang G, Zhou X. 2007. Comparisons of ground motions from colocated and closely spaced one-sample-per-second global positioning system and accelerograph recordings of the 2003 M6.5 San Simeon, California, earthquake in the Parkfield region. Bull Seismol Soc Amer, 97: 76–90

    Article  Google Scholar 

  • Wang W M, Zhao L F, Li J, Yao Z X. 2008. Rupture process of the Ms8.0 Wenchuan earthquake of Sichuan, China (in Chinese). Chin J Geophys, 51: 1403–1410

    Google Scholar 

  • Wei S J, Fielding E, Leprince S, Sladen A, Avouac J P, Helmberger Don, Hauksson E, Chu R S, Simons M, Hudnut K, Herring T, Briggs R. 2011. Superficial simplicity of the 2010 El Mayor-Cucapah earthquake of Baja California in Mexico. Nat Geosci, 4: 615–618

    Article  Google Scholar 

  • Xu X W, Wen X Z, Han Z J, Chen G H, Li C Y, Zheng W J, Zhnag S M, Ren Z Q, Xu C, Tan X B, Wei Z Y, Wang M M, Ren J J, He Z T, Liang M J. 2013. Lushan M s7.0 earthquake: A blind reserve-fault earthquake (in Chinese). Chin Sci Bull, 58: 3437–3443

    Article  Google Scholar 

  • Yokota Y, Koketsu K, Hikima K, Miyazaki S. 2009. Ability of 1-Hz GPS data to infer the source process of a medium-sized earthquake: The case of the 2008 Iwate-Miyagi Nairiku, Japan, earthquake. Geophys Res Lett, 36: L12301, doi: 10.1029/2009GL037799

  • Yin H T, Zhang P, Gan W, Wang M, Liao H, Li X J, Li J, Xiao G R. 2010. Near-field surface movement during the Wenchuan Ms 8.0 earthquake measured by high-rate GPS. Chin Sci Bull, 55: 2529–2534

    Article  Google Scholar 

  • Yue H, Lay T. 2011. Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (M w9.1). Geophys Res Lett, 38: L00G09, doi: 10.1029/2011GL048700

  • Zhang J, Zhang K, Grenfell R, Deakin R. 2006a. GPS satellite velocity and acceleration determination using the broadcast ephemeris. J Navigation, 59: 293–305

    Article  Google Scholar 

  • Zhang J, Zhang K, Grenfell R, Deakin R. 2006b. Short note: On the relativistic Doppler effect for precise velocity determination using GPS. J Geodesy, 80: 104–110

    Article  Google Scholar 

  • Zhang J. 2007. Precise velocity and acceleration determination using a standalone GPS receiver in real time. Doctoral Dissertation. Melbourne: Royal Melbourne Institute of Technology, Australia

    Google Scholar 

  • Zhao L, Luo Y, Liu T Y, Luo Y J. 2013. Earthquake focal mechanisms in Yunnan and their inference on the regional stress field. Bull Seismol Soc Amer, 103: 2498–2507

    Article  Google Scholar 

  • Zheng Y, Li J, Xie Z, Ritzwoller M H. 2012. 5 Hz GPS seismology of the El Mayor-Cucapah earthquake: Estimating the earthquake focal mechanism. Geophys J Int, 190: 1723–1732

    Article  Google Scholar 

  • Zhu L, Ben-Zion Y. 2013. Parameterization of general seismic potency and moment tensors for source inversion of seismic waveform data. Geophys J Int, 194: 839–843

    Article  Google Scholar 

  • Zhu L, Helmberger D. 1996. Advancement in source estimation techniques using broadband regional seismograms. Bull Seismol Soc Amer, 86: 1634–1641

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SiDao Ni.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, A., Ni, S., Chen, W. et al. Rapid earthquake focal mechanism inversion using high-rate GPS velometers in sparse network. Sci. China Earth Sci. 58, 1970–1981 (2015). https://doi.org/10.1007/s11430-015-5174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5174-7

Keywords

Navigation