Skip to main content
Log in

Seismic inversion for underground fractures detection based on effective anisotropy and fluid substitution

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Underground fractures play an important role in the storage and movement of hydrocarbon fluid. Fracture rock physics has been the useful bridge between fracture parameters and seismic response. In this paper, we aim to use seismic data to predict subsurface fractures based on rock physics. We begin with the construction of fracture rock physics model. Using the model, we may estimate P-wave velocity, S-wave velocity and fracture rock physics parameters. Then we derive a new approximate formula for the analysis of the relationship between fracture rock physics parameters and seismic response, and we also propose the method which uses seismic data to invert the elastic and rock physics parameters of fractured rock. We end with the method verification, which includes using well-logging data to confirm the reliability of fracture rock physics effective model and utilizing real seismic data to validate the applicability of the inversion method. Tests show that the fracture rock physics effective model may be used to estimate velocities and fracture rock physics parameters reliably, and the inversion method is resultful even when the seismic data is added with random noise. Real data test also indicates the inversion method can be applied into the estimation of the elastic and fracture weaknesses parameters in the target area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachrach R, Sengupta M, Salama A, et al. 2009. Reconstruction of the layer anisotropic elastic parameter and high resolution fracture characterization from P-wave data: A case study using seismic inversion and Bayesian rock physics parameter estimation. Geophys Prospect, 57: 253–262

    Article  Google Scholar 

  • Bakulin A, Grechka V, Tsvankin I. 2000. Estimation of fracture parameters from reflection seismic data—Part I: HTI model due to a single fracture set. Geophysics, 65: 1788–1802

    Article  Google Scholar 

  • Batzle M, Han D H, Castagna J. 1999. Fluids and frequency dependent seismic velocity of rocks. Seg Tech Prog Exp Abs, 18: 5–8

    Google Scholar 

  • Batzle M, Han D H, Hofmann R. 2006. Fluid mobility and frequency-dependent seismic velocity—Direct measurements. Geophysics, 71: N1–N9

    Article  Google Scholar 

  • Biot M A. 1956a. Theory of propagation of elastic waves in a fluid saturated porous solid: A. Low-frequency range. J Acoust Soc Am, 28: 168–179

    Article  Google Scholar 

  • Biot M A. 1956b. Theory of propagation of elastic waves in a fluid saturated porous solid. B. Higher frequency range. J Acoust Soc Am, 28: 170–191

    Google Scholar 

  • Brown R, Korringa J. 1975. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics, 40: 608–616

    Article  Google Scholar 

  • Chapman M. 2009. Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy. Geophysics, 74: D97–D103

    Article  Google Scholar 

  • Cheng C H. 1978. Seismic velocities in porous rocks: Direct and inverse problems. Doctoral Dissertation. Massachusetts: Massachusetts Institute of Technology

    Google Scholar 

  • Cheng C H. 1993. Crack models for a transversely anisotropic medium. J Geophys Res, 98: 675–684

    Article  Google Scholar 

  • Downton J. 2005. oSeismic parameter estimation from AVO inversion. Doctoral Dissertation. Alberta: University of Calgary

    Google Scholar 

  • Downton J, Gray D. 2006. AVAZ parameter uncertainty estimation. Seg Tech Prog Exp Abs, 25: 234–238

    Google Scholar 

  • Gassmann F. 1951. Uber die elastizitat poroser medien. Vierteljahrsschrift Naturforschenden Gesellschaft Zurich, 96: 1–23

    Google Scholar 

  • Gurevich B. 2003. Elastic properties of saturated porous rocks with aligned fractures. J Appl Geophys, 54: 203–218

    Article  Google Scholar 

  • Hill R. 1952. The elastic behavior of crystalline aggregate. Proc Phys Soc, 65: 349–354

    Article  Google Scholar 

  • Huang L, Jiang T, Omoboya B, et al. 2013. Fluid substitution for an HTI medium. Seg Tech Prog Exp Abs, 32: 2659–2663

    Google Scholar 

  • Hudson J A. 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J R Astr Soc, 64: 133–150

    Article  Google Scholar 

  • Liu E, Martinez A. 2012. Seismic fracture characterization. Netherlands: EAGE Publication

    Google Scholar 

  • Mallick S, Craft K L, Meister L J, et al. 1998. Determination of the principal directions of azimuthal anisotropy from P-wave seismic data. Geophysics, 63: 692–706

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook. Cambridge: Cambridge University press.

    Book  Google Scholar 

  • Quintal B, Schmalholz S M, Podladchikov Y. 2010a. Impact of fluid saturation on the reflection coefficient of a poroelastic layer. Seg Tech Prog Exp Abs, 29: 2730–2735

    Google Scholar 

  • Quintal B, Steeb H, Frehner M, et al. 2010b. Finite element modeling of seismic attenuation due to fluid flow in partially saturated rocks. Seg Tech Prog Exp Abs, 29: 2564–2569

    Google Scholar 

  • Quintal B, Schmalholz S M, Podladchikov Y. 2011. Impact of fluid saturation on the reflection coefficient of a poroelastic layer. Geophysics, 76: N1–N12

    Article  Google Scholar 

  • Quintal B, Steeb H, Frehner M, et al. 2012. Pore fluid effects on S-wave attenuation caused by wave-induced fluid flow. Geophysics, 77: L13–L23

    Article  Google Scholar 

  • Rüger A. 1996. Reflection coefficient and azimuthal AVO analysis in anisotropic media. Doctoral Dissertation. Colorado: Colorado School of Mines

    Google Scholar 

  • Rüger A. 1997. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 62: 713–722

    Article  Google Scholar 

  • Rüger A. 1998. Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophysics, 63: 935–947

    Article  Google Scholar 

  • Sa L M, Yao F C, Di B R, et al. 2011. Seismic response characteristics and identification method of fracture-cavity reservoir (in Chinese). Litholog Reserv, 23: 23–28

    Google Scholar 

  • Schoenberg M. 1980. Elastic wave behavior across linear slip interface. J Acoust Soc Amer, 68: 1516–1521

    Article  Google Scholar 

  • Schoenberg M, Douma J. 1988. Elastic wave propagation in media with parallel fractures and aligned cracks. Geophys Prospect, 36: 571–590

    Article  Google Scholar 

  • Schoenberg M, Helbig K. 1997. Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth. Geophysics, 62: 1954–1974

    Article  Google Scholar 

  • Schoenberg M, Muirt F. 1989. A calculus for finely layered anisotropic media. Geophysics, 54: 581–589

    Article  Google Scholar 

  • Schoenberg M, Protazio J. 1992. ‘Zoeppritz’ rationalized and generalized to anisotropy. J Seis Expl, 1: 125–144

    Google Scholar 

  • Schoenberg M, Sayers C M. 1995. Seismic anisotropy of fractured rock. Geophysics, 60: 204–211

    Article  Google Scholar 

  • Tang W B, Liu L X, Fan G, et al. 2002. Analytic technique of frequency difference for discrimination of cavity fillers (in Chinese). Oil Gas Geol, 23: 41–44

    Google Scholar 

  • Tang X M. 2011. A unified theory for elastic wave propagation through porous media containing cracks-An extension of Biot’s poroelastic wave theory. Sci China Earth Sci, 54: 1441–1452

    Article  Google Scholar 

  • Thomsen L. 1986. Weak elastic anisotropy. Geophysics, 51: 1954–1966

    Article  Google Scholar 

  • Teng L. 1998. Seismic and rock physics characterization of fractured reservoirs. Doctoral Dissertation. California: Stanford University

    Google Scholar 

  • Wood A W. 1955. A Textbook of Sound. New York: McMillan Co

    Google Scholar 

  • Yao Y, Tang W B. 2003. Theoretical study of detectable cavern-fractured reservoir in weathered Karst of deep carbonate (in Chinese). Oil Geol Prospec, 38: 623–629

    Google Scholar 

  • Yao Y, Tang W B, Xi X, et al. 2012. Wave field analysis and recognition method of cave reservoir based on numerical simulation (in Chinese). Litholog Reserv, 24: 1–6

    Google Scholar 

  • Yang W C. 1997. Theory and Methods of Geophysical Inversion (in Chinese). Beijing: Geological Publishing House

    Google Scholar 

  • Zimmerman R W. 1991. Elastic moduli of a solid containing spherical inclusions. Mech Mater, 12: 17–24

    Article  Google Scholar 

  • Zhang G Z, Chen H Z, Wang Q, et al. 2013. Estimation of S-wave velocity and anisotropic parameters using fractured carbonate rock physics model (in Chinese). Chin J Geophys, 56: 1707–1715

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangZhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Yin, X., Gao, J. et al. Seismic inversion for underground fractures detection based on effective anisotropy and fluid substitution. Sci. China Earth Sci. 58, 805–814 (2015). https://doi.org/10.1007/s11430-014-5022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-5022-1

Keywords

Navigation