Skip to main content
Log in

Distribution and changes of active layer thickness (ALT) and soil temperature (TTOP) in the source area of the Yellow River using the GIPL model

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Active layer thickness (ALT) is critical to the understanding of the surface energy balance, hydrological cycles, plant growth, and cold region engineering projects in permafrost regions. The temperature at the bottom of the active layer, a boundary layer between the equilibrium thermal state (in permafrost below) and transient thermal state (in the atmosphere and surface canopies above), is an important parameter to reflect the existence and thermal stability of permafrost. In this study, the Geophysical Institute Permafrost Model (GIPL) was used to model the spatial distribution of and changes in ALT and soil temperature in the Source Area of the Yellow River (SAYR), where continuous, discontinuous, and sporadic permafrost coexists with seasonally frozen ground. Monthly air temperatures downscaled from the CRU TS3.0 datasets, monthly snow depth derived from the passive microwave remote-sensing data SMMR and SSM/I, and vegetation patterns and soil properties at scale of 1:1000000 were used as input data after modified with GIS techniques. The model validation was carried out carefully with ALT in the SAYR has significantly increased from 1.8 m in 1980 to 2.4 m in 2006 at an average rate of 2.2 cm yr−1. The mean annual temperature at the bottom of the active layer, or temperature at the top of permafrost (TTOP) rose substantially from −1.1°C in 1980 to −0.6°C in 2006 at an average rate of 0.018°C yr−1. The increasing rate of the ALT and TTOP has accelerated since 2000. Regional warming and degradation of permafrost has also occurred, and the changes in the areal extent of regions with a sub-zero TTOP shrank from 2.4×104 to 2.2×104 km2 at an average rate of 74 km2 yr−1. Changes of ALT and temperature have adversely affected the environmental stability in the SAYR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anisimov O A, Shiklomanov N I, Nelson F E. 1997. Global warming and active-layer thickness: Results from transient general circulation models. Glob Planet Change, 15: 61–77

    Article  Google Scholar 

  • Cai Y, Li D L, Tang M C. 2003. Decadal temperature changes over Qinghai-Xizang Plateau in recent 50 years. Plateau Meterol, 22: 464–470

    Google Scholar 

  • Che T, Li X, Jin R, et al. 2008. Snow depth derived from passive microwave remote-sensing data in China. Annals Glaciol, 49: 145–154

    Article  Google Scholar 

  • Cheng G D. 1984. Problems on zonation of high-elevation permafrost (in Chinese). Acta Geograph Sin, 39: 185–193

    Google Scholar 

  • Cheng G D, Wu T H. 2007. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res, 112: F02S03

    Google Scholar 

  • Cheng W M, Zhao S M, Zhou C H, et al. 2012. Simulation of the decadal permafrost distribution on the Qinghai-Tibet Plateau (China) over the past 50 years. Permafrost Periglac Process, 23: 292–300

    Article  Google Scholar 

  • Guglielmin M, Ellis C J E, Cannone N. 2008. Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctica). Geoderma, 144: 73–85

    Article  Google Scholar 

  • Guo D L, Wang H J, Li D. 2012. A projection of permafrost degradation on the Tibetan Plateau during the 21st century. J Geophys Res, 117: D05106

    Google Scholar 

  • Jin H J, Yu Q H, Wang S L, et al. 2008. Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming. Cold Reg Sci Technol, 53: 317–333

    Article  Google Scholar 

  • Jin H J, He R X, Cheng G D, et al. 2009. Changes in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environ Res Lett, 4: 1–11

    Article  Google Scholar 

  • King L, Herz T, Hartmann H, et al. 2006. The PACE monitoring strategy: A concept for permafrost research in Qinghai-Tibet. Quatern Int, 154–155: 149–157

    Article  Google Scholar 

  • Li R, Zhao L, Ding Y J, et al. 2012. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chin Sci Bull, 57: 4609–4616

    Article  Google Scholar 

  • Li X, Cheng G D. 1999. A GIS-aided response model of high altitude permafrost to global change, Sci China Ser D-Earth Sci, 42: 72–79

    Google Scholar 

  • Li X, Cheng G D, Lu L. 2005. Spatial analysis of air temperature in the Qinghai-Tibet Plateau. Arctic Antarctic Alpine Res, 37: 246–252

    Article  Google Scholar 

  • Li X, Cheng G D, Jin H J, et al. 2008. Cryospheric change in China. Glob Planet Change, 62: 210–218

    Article  Google Scholar 

  • Liang S H, Wan L, Li Z M, et al. 2007. The effect of permafrost on alpine vegetation in the source regions of the Yellow River (in Chinese). J Glaciol Geocryol, 29: 45–52

    Google Scholar 

  • Ling F, Zhang T J. 2003. Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic. Permafrost Periglac Process, 14: 141–150

    Article  Google Scholar 

  • Liu T L. 1983. A summarization of formulas of calculating frozen or melted depth abroad (in Chinese). J Glaciol Geocryol, 5: 85–95

    Google Scholar 

  • Luo D L, Jin H J, Jin R, et al. 2011. The extraction of watershed characteristics of the Source Area of Yellow River based on SRTM DEM with ArcGIS, IEEE (in Chinese). IEEE Xplore: International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE2011), Nanjing, China. doi: 10.1109/RSETE.2011.5964645

    Google Scholar 

  • Luo D L, Jin H J, Lin L, et al. 2012a. New progress on permafrost temperature and thickness in the source area of the Huanghe River (in Chinese). Scient Geograph Sin, 32: 898–904

    Google Scholar 

  • Luo D L, Jin H J, Lin L, et al. 2012b. Degradation of permafrost and cold-environments on the interior and eastern Qinghai Plateau (in Chinese). J Glaciol Geocryol, 34: 538–546

    Google Scholar 

  • Luo D L, Jin H J, Lin L, et al. 2013. Distributive features and controlling factors of permafrost and the active layer thickness in the Bayan Har Mountains along the Qinghai-Kangding Highway on Northeastern Qinghai-Tibet Plateau (in Chinese). Scient Geograph Sin, 33: 635–640

    Google Scholar 

  • Ma L J, Qin D H. 2012. Spatial-Temporal characteristics of observed key parameters for snow cover in China during 1957–2009 (in Chinese). J Glaciol Geocryol, 34: 1–11

    Google Scholar 

  • Mitchell T D, Jones P D. 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol, 25: 693–712

    Article  Google Scholar 

  • Nan Z T, Li S X, Cheng G D. 2005. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years. Sci China Ser D-Earth Sci, 48: 797–804

    Article  Google Scholar 

  • Nelson F E, Outcalt S I. 1987. A computational method for prediction and regionalization of permafrost. Arct Alp Res, 19: 279–288

    Article  Google Scholar 

  • Oelke C, Zhang T J. 2007. Modeling the active-layer depth over the Tibetan Plateau. Arct Antarct Alp Res, 39: 714–722

    Article  Google Scholar 

  • Pang Q Q, Cheng G D, Li S X, et al. 2009. Active layer thickness calculation over the Qinghai-Tibet Plateau. Cold Reg Sci Technol, 57: 23–28

    Article  Google Scholar 

  • Riseborough D, Shiklomanov N, Etzelmüller B, et al. 2008. Recent advances in permafrost modelling. Permafrost Periglac Process, 19: 137–156

    Article  Google Scholar 

  • Romanovsky V E, Osterkamp T E. 1997. Thawing of the active layer on the Coastal Plain of the Alaskan Arctic. Permafrost Periglac Process, 8: 1–22

    Article  Google Scholar 

  • Sazonova T S, Romanovsky V E. 2003. A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures. Permafrost Periglac Process, 14: 125–139

    Article  Google Scholar 

  • Sazonova T S, Romanovsky V E. 2004. Permafrost dynamics in the 20th and 21st centuries along the East Siberian transect. J Geophys Res, 109: D01108

    Google Scholar 

  • Shiklomanov N I, Nelson F E. 1999. Analytic representation of the active layer thickness field, Kuparuk River Basin, Alaska. Ecol Model, 123: 105–125

    Article  Google Scholar 

  • Shiklomanov N, Nelson F, Streletskiy D, et al. 2008. The Circumpolar Active Layer Monitoring (CALM) program: Data collection, management, and dissemination strategies. In: Kane D L, Hinkel K M, eds. Proc 9th Int Conf Permafrost, 2: 1–6

    Google Scholar 

  • Shiklomanov N I, Streletskiy D A, Nelson F E, et al. 2010. Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska. J Geophys Res, 115: G00I04

    Google Scholar 

  • Wei S G, Dai Y J, Liu B Y, et al. 2012. A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma, 171–172: 85–91

    Google Scholar 

  • Smith M W, Riseborough D W. 2002. Climate and the limits of permafrost: A zonal analysis. Permafrost Periglac Process, 13: 1–15

    Article  Google Scholar 

  • Streletskiy D A, Shiklomanov N I, Nelson F E. 2012. Spatial variability of permafrost active-layer thickness under contemporary and projected climate in Northern Alaska. Polar Geography, 35: 95–116

    Article  Google Scholar 

  • van Everdingen R O, ed. 2005. Multi-languge Glossary of Permafrost and Related Ground-ice Terms. Boulder: National Snow and Ice Data Center/World Data Center for Glaciology. 222

    Google Scholar 

  • Wu Q B, Zhang T J. 2008. Recent permafrost warming on the Qinghai-Tibetan Plateau. J Geophys Res, 113: D13108

    Article  Google Scholar 

  • Wu J C, Sheng Y, Wu Q B, et al. 2010. Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau. Sci China Earth Sci, 53: 150–158

    Google Scholar 

  • Wu Q B, Zhang T J. 2010. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J Geophys Res, 115: D09107

  • Wu Q B, Zhang T J, Liu Y Z. 2012. Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010. Cryosphere, 6: 607–612

    Article  Google Scholar 

  • Xie Y, Zeng Q. 1983. Climatic conditions for the occurrence of permafrost in the Qinghai-Tibet Plateau (in Chinese). In: Proceedings of the Second National Conference on Permafrost. Lanzhou: Gansu People’s Publishing House. 13–20

    Google Scholar 

  • Xu X Z, Wang J C, Zhang L X. 2010. Physics of Frozen Soils (in Chinese). Beijing: Science Press. 84–90

    Google Scholar 

  • Yi X S, Yin Y H, Li G S, et al. 2011. Temperature variation in recent 50 years in the three-river headwaters region of Qinghai Province (in Chinese). Acta Geograph Sin, 66: 1451–1465

    Google Scholar 

  • Zhang T J. 2005. Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res, 110: D16101

    Article  Google Scholar 

  • Zhao L, Wu Q B, Marchenko S S, et al. 2010. Thermal state of permafrost and active layer in Central Asia during the international polar year. Permafrost Periglac Process, 21: 198–207

    Article  Google Scholar 

  • Zhou J, Kinzelbach W, Cheng G D, et al. 2013. Monitoring and modeling the influence of snow pack and organic soil on a permafrost active layer, Qinghai-Tibetan Plateau of China. Cold Region Sci Tech, 90–91: 38–52

    Article  Google Scholar 

  • Zhou Y W, Qiu G Q, Guo D X, et al. 2000. Frozen ground in China (in Chinese). Beijing: Science Press. 63–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongLiang Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D., HuiJun, J., Marchenko, S. et al. Distribution and changes of active layer thickness (ALT) and soil temperature (TTOP) in the source area of the Yellow River using the GIPL model. Sci. China Earth Sci. 57, 1834–1845 (2014). https://doi.org/10.1007/s11430-014-4852-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4852-1

Keywords

Navigation