Skip to main content
Log in

Analysis of XCO2 retrieval sensitivity using simulated Chinese Carbon Satellite (TanSat) measurements

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

We present a study on the retrieval sensitivity of the column-averaged dry-air mole fraction of CO2 (XCO2) for the Chinese carbon dioxide observation satellite (TanSat) with a full physical forward model and the optimal estimation technique. The forward model is based on the vector linearized discrete ordinate radiative transfer model (VLIDORT) and considers surface reflectance, gas absorption, and the scattering of air molecules, aerosol particles, and cloud particles. XCO2 retrieval errors from synthetic TanSat measurements show solar zenith angle (SZA), albedo dependence with values varying from 0.3 to 1 ppm for bright land surface in nadir mode and 2 to 8 ppm for dark surfaces like snow. The use of glint mode over dark oceans significantly improves the CO2 information retrieved. The aerosol type and profile are more important than the aerosol optical depth, and underestimation of aerosol plume height will introduce a bias of 1.5 ppm in XCO2. The systematic errors due to radiometric calibration are also estimated using a forward model simulation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aben I, Hasekamp O, Hartmann W. 2007. Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth’s atmosphere. J Quant Spectrosc Radiat Transf, 104: 450–459

    Article  Google Scholar 

  • Baldridge A M, Hook S J, Grove C I, et al. 2009. The ASTER spectral library version 2.0. Remote Sens Environ, 113: 711–715

    Article  Google Scholar 

  • Boesch H, Baker D, Connor B, et al. 2011. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission. Remote Sens, 3: 270–304

    Article  Google Scholar 

  • Butz A, Hasekamp O P, Frankenberg C, et al. 2009. Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: Accounting for aerosol effects. Appl Optics, 48: 3322–3336

    Article  Google Scholar 

  • Butz A, Guerlet S, Hasekamp O, et al. 2011. Toward accurate CO2 and CH4 observations from GOSAT. Geophys Res Lett, 38: L14812, doi: 10.1029/2011GL047888

    Google Scholar 

  • Cai Z, Liu Y, Liu X, et al. 2012. Characterization and correction of Global Ozone Monitoring Experiment 2 ultraviolet measurements and application to ozone profile retrievals. J Geophys Res, 117: D07305, doi: 10.1029/2011JD017096

    Google Scholar 

  • Chandrasekhar S. 1950. Radiative Transfer. Oxford: Oxford University Press

    Google Scholar 

  • Connor B J, Boesch H, Toon G, et al. 2008. Orbiting Carbon Observatory: Inverse method and prospective error analysis. J Geophys Res, 113: D05305, doi: 10.1029/2006JD008336

    Google Scholar 

  • Crisp D, Atlas R M, Breon F M, et al. 2004. The Orbiting Carbon Observatory (OCO) mission. Adv Space Res, 34: 700–709

    Article  Google Scholar 

  • Hartmann J M, Tran H, Toon G. 2009. Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions. Atmos Chem Phys, 9: 4873–4898

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007. 2007. Working Group I: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon S, et al., eds. Cambridge: Cambridge University Press

  • Kuang Z, Margolis J, Toon G, et al. 2002. Spaceborne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: An introductory study. Geophys Res Lett, 29: 1716

    Google Scholar 

  • Kuze A, Suto H, Nakajima M, et al. 2009. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl Optics, 48: 6716–6733

    Article  Google Scholar 

  • Liu Y, Duan M Z, Cai Z N, et al. 2011. Chinese Carbon Dioxide Observation Satellite (TanSat) Project. 2011 AGU Fall Meeting

    Google Scholar 

  • Min M, Wang P C, Zong X M, et al. 2011. Cirrus cloud macrophysical and optical properties over North China from CALIOP measurements. Adv Atmos Sci, 28: 653–664

    Article  Google Scholar 

  • Mishchenko M I, Travis L D, Lacis A A. 2002. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge: Cambridge University Press

    Google Scholar 

  • O’Dell C W, Connor B, Bosch H, et al. 2012. The ACOS CO2 retrieval algorithm—Part 1: Description and validation against synthetic observations. Atmos Meas Tech, 5: 99–121

    Article  Google Scholar 

  • Rayner P J, O’Brien D M. 2001. The utility of remotely sensed CO2 concentration data in surface source inversions. Geophys Res Lett, 28: 175–178

    Article  Google Scholar 

  • Rodgers C D. 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice. Sigapore: World Scientific

    Book  Google Scholar 

  • Rothman L S, Gordon I E, Barbe A, et al. 2009. The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transfer, 110: 533–572

    Article  Google Scholar 

  • Spurr R J D. 2006. VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. J Quant Spectrosc Radiat Transf, 102: 316–342

    Article  Google Scholar 

  • Yang D X, Liu Y, Cai Z N. 2013. Simulations of aerosol optical properties to top of atmospheric reflected sunlight in the near infrared CO2 weak absorption band. Atmos Ocean Sci Lett, 6: 60–64

    Google Scholar 

  • Yokota T, Yoshida Y, Eguchi N, et al. 2009. Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. SOLA, 5: 160–163

    Article  Google Scholar 

  • Yoshida Y, Ota Y, Eguchi N, et al. 2011. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite. Atmos Meas Tech, 4: 717–734

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Liu, Y. & Yang, D. Analysis of XCO2 retrieval sensitivity using simulated Chinese Carbon Satellite (TanSat) measurements. Sci. China Earth Sci. 57, 1919–1928 (2014). https://doi.org/10.1007/s11430-013-4707-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-013-4707-1

Keywords

Navigation