Skip to main content
Log in

Self-adjuvant Astragalus polysaccharide-based nanovaccines for enhanced tumor immunotherapy: a novel delivery system candidate for tumor vaccines

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The study of tumor nanovaccines (NVs) has gained interest because they specifically recognize and eliminate tumor cells. However, the poor recognition and internalization by dendritic cells (DCs) and insufficient immunogenicity restricted the vaccine efficacy. Herein, we extracted two molecular-weight Astragalus polysaccharides (APS, 12.19 kD; APSHMw, 135.67 kD) from Radix Astragali and made them self-assemble with OVA257−264 directly forming OVA/APS integrated nanocomplexes through the microfluidic method. The nanocomplexes were wrapped with a sheddable calcium phosphate layer to improve stability. APS in the formed nanocomplexes served as drug carriers and immune adjuvants for potent tumor immunotherapy. The optimal APS-NVs were approximately 160 nm with uniform size distribution and could remain stable in physiological saline solution. The FITC-OVA in APS-NVs could be effectively taken up by DCs, and APS-NVs could stimulate the maturation of DCs, improving the antigen cross-presentation efficiency in vitro. The possible mechanism was that APS can induce DC activation via multiple receptors such as dectin-1 and Toll-like receptors 2 and 4. Enhanced accumulation of APS-NVs both in draining and distal lymph nodes were observed following s.c. injection. Smaller APS-NVs could easily access the lymph nodes. Furthermore, APS-NVs could markedly promote antigen delivery efficiency to DCs and activate cytotoxic T cells. In addition, APS-NVs achieve a better antitumor effect in established B16-OVA melanoma tumors compared with the OVA+Alum treatment group. The antitumor mechanism correlated with the increase in cytotoxic T cells in the tumor region. Subsequently, the poor tumor inhibitory effect of APS-NVs on the nude mouse model of melanoma also confirmed the participation of antitumor adaptive immune response induced by NVs. Therefore, this study developed a promising APS-based tumor NV that is an efficient tumor immunotherapy without systemic side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aikins, M.E., Xu, C., and Moon, J.J. (2020). Engineered nanoparticles for cancer vaccination and immunotherapy. Acc Chem Res 53, 2094–2105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byun, E.B., Sung, N.Y., Park, S.H., Park, C., and Byun, E.H. (2015). β-(1,3)-glucan isolated from Agrobacterium species induces maturation of bone marrow-derived dendritic cells and drives Th1 immune responses. Food Sci Biotechnol 24, 1533–1540.

    Article  CAS  Google Scholar 

  • Chen, F., Wang, Y., Gao, J., Saeed, M., Li, T., Wang, W., and Yu, H. (2021). Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials 270, 120709.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., Yang, L., Ou, X., Li, J.Y., Zi, C.T., Wang, H., Hu, J.M., and Liu, Y. (2022). A new polysaccharide platform constructs self-adjuvant nanovaccines to enhance immune responses. J Nanobiotechnol 20, 320.

    Article  CAS  Google Scholar 

  • Choi, W.J., Lee, S.H., Park, B.C., and Kotov, N.A. (2022). Terahertz circular dichroism spectroscopy of molecular assemblies and nanostructures. J Am Chem Soc 144, 22789–22804.

    Article  CAS  PubMed  Google Scholar 

  • Costa, C., Liu, Z., Martins, J.P., Correia, A., Figueiredo, P., Rahikkala, A., Li, W., Seitsonen, J., Ruokolainen, J., Hirvonen, S.P., et al. (2020). All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomater Sci 8, 3270–3277.

    Article  CAS  PubMed  Google Scholar 

  • Del Giudice, G., Rappuoli, R., and Didierlaurent, A.M. (2018). Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin Immunol 39, 14–21.

    Article  CAS  PubMed  Google Scholar 

  • Ding, B., Sheng, J., Zheng, P., Li, C., Li, D., Cheng, Z., Ma, P.’., and Lin, J. (2021). Biodegradable upconversion nanoparticles induce pyroptosis for cancer immunotherapy. Nano Lett 21, 8281–8289.

    Article  CAS  PubMed  Google Scholar 

  • Du, Y., Wan, H., Huang, P., Yang, J., and He, Y. (2022). A critical review of Astragalus polysaccharides: from therapeutic mechanisms to pharmaceutics. Biomed Pharmacother 147, 112654.

    Article  CAS  PubMed  Google Scholar 

  • Fan, J.Y., Yi, T., Sze-To, C.M., Zhu, L., Peng, W.L., Zhang, Y.Z., Zhao, Z.Z., and Chen, H.B. (2014). A systematic review of the botanical, phytochemical and pharmacological profile of Dracaena cochinchinensis, a plant source of the ethnomedicine “Dragon’s Blood”. Molecules 19, 10650–10669.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan, R., Chen, C., Mu, M., Chuan, D., Liu, H., Hou, H., Huang, J., Tong, A., Guo, G., and Xu, J. (2023). Engineering MMP-2 activated nanoparticles carrying B7-H3 bispecific antibodies for ferroptosis-enhanced glioblastoma immunotherapy. ACS Nano 17, 9126–9139.

    Article  CAS  PubMed  Google Scholar 

  • Fan, Y., Ma, L., Zhang, W., Cui, X., Zhen, Y., Suolangzhaxi, Y., and Song, X. (2013). Liposome can improve the adjuvanticity of astragalus polysaccharide on the immune response against ovalbumin. Int J Biol Macromol 60, 206–212.

    Article  CAS  PubMed  Google Scholar 

  • Gamboa Marin, O.J., Hussain, N., Ravicoularamin, G., Ameur, N., Gormand, P., Sauvageau, J., and Gauthier, C. (2020). Total synthesis of 6-amino-2,6-dideoxy-α-Kdo from d-mannose. Org Lett 22, 5783–5788.

    Article  CAS  PubMed  Google Scholar 

  • Garbuglia, A.R., Lapa, D., Sias, C., Capobianchi, M.R., and Del Porto, P. (2020). The use of both therapeutic and prophylactic vaccines in the therapy of papillomavirus disease. Front Immunol 11, 188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gential, G.P.P., Hogervorst, T.P., Tondini, E., van de Graaff, M.J., Overkleeft, H.S., Codée, J.D.C., van der Marel, G.A., Ossendorp, F., and Filippov, D.V. (2019). Peptides conjugated to 2-alkoxy-8-oxo-adenine as potential synthetic vaccines triggering TLR7. Bioorg Med Chem Lett 29, 1340–1344.

    Article  CAS  PubMed  Google Scholar 

  • Guha, J., Kang, B., Claudio, E., Redekar, N.R., Wang, H.S., Kelsall, B.L., Siebenlist, U., and Murphy, P.M. (2022). NF kappa B regulator Bcl3 controls development and function of classical dendritic cells required for resistance to Toxoplasma gondii. PLoS Pathog 18, e1010502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Z., Lou, Y., Kong, M., Luo, Q., Liu, Z., and Wu, J. (2019). A systematic review of phytochemistry, pharmacology and pharmacokinetics on Astragali Radix: implications for Astragali Radix as a personalized medicine. Int J Mol Sci 20, 1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., Li, Y., and Xu, F.J. (2017). Versatile functionalization of polysaccharides via polymer grafts: from design to biomedical applications. Acc Chem Res 50, 281–292.

    Article  CAS  PubMed  Google Scholar 

  • Huang, P., Wang, X., Liang, X., Yang, J., Zhang, C., Kong, D., and Wang, W. (2019). Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomater 85, 1–26.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Shen, H., Liu, Y., Qiu, S., and Guo, Y. (2021). Fisetin attenuates periodontitis through FGFR1/TLR4/NLRP3 inflammasome pathway. Int Immunopharmacol 95, 107505.

    Article  CAS  PubMed  Google Scholar 

  • Jin, Y., Mu, Y., Zhang, S., Li, P., and Wang, F. (2020). Preparation and evaluation of the adjuvant effect of curdlan sulfate in improving the efficacy of dendritic cell-based vaccine for antitumor immunotherapy. Int J Biol Macromol 146, 273–284.

    Article  CAS  PubMed  Google Scholar 

  • Kong, F., Chen, T., Li, X., and Jia, Y. (2021). The current application and future prospects of astragalus polysaccharide combined with cancer immunotherapy: a review. Front Pharmacol 12, 737674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuai, R., Ochyl, L.J., Bahjat, K.S., Schwendeman, A., and Moon, J.J. (2017). Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater 16, 489–496.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Zhou, H., Jiang, W., Yang, C., Miao, H., and Wang, Y. (2020). Nanovaccines integrating endogenous antigens and pathogenic adjuvants elicit potent antitumor immunity. Nano Today 35, 101007.

    Article  CAS  Google Scholar 

  • Li, Y., Wang, X., Ma, X., Liu, C., Wu, J., and Sun, C. (2021). Natural polysaccharides and their derivates: a promising natural adjuvant for tumor immunotherapy. Front Pharmacol 12, 621813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, Z., Huang, J., Lo, P.C., Lovell, J.F., Jin, H., and Yang, K. (2022). Self-adjuvanting cancer nanovaccines. J Nanobiotechnol 20, 345.

    Article  Google Scholar 

  • Liu, F., Liu, L., Liu, D., Wei, P., Feng, W., and Yi, T. (2022). An excipient-free “sugar-coated bullet” for the targeted treatment of orthotopic hepatocellular carcinoma. Chem Sci 13, 10815–10823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynn, G.M., Sedlik, C., Baharom, F., Zhu, Y., Ramirez-Valdez, R.A., Coble, V.L., Tobin, K., Nichols, S.R., Itzkowitz, Y., Zaidi, N., et al. (2020). Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat Biotechnol 38, 320–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, X., Yang, S., Zhang, T., Wang, S., Yang, Q., Xiao, Y., Shi, X., Xue, P., Kang, Y., Liu, G., et al. (2022). Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy. Acta Pharm Sin B 12, 451–466.

    Article  CAS  PubMed  Google Scholar 

  • McGranahan, N., and Swanton, C. (2017). Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628.

    Article  CAS  PubMed  Google Scholar 

  • Mohsen, M.O., Heath, M.D., Cabral-Miranda, G., Lipp, C., Zeltins, A., Sande, M., Stein, J.V., Riether, C., Roesti, E., Zha, L., et al. (2019). Vaccination with nanoparticles combined with micro-adjuvants protects against cancer. J Immunother Cancer 7, 114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberli, M.A., Reichmuth, A.M., Dorkin, J.R., Mitchell, M.J., Fenton, O.S., Jaklenec, A., Anderson, D.G., Langer, R., and Blankschtein, D. (2017). Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett 17, 1326–1335.

    Article  CAS  PubMed  Google Scholar 

  • Pang, G., Chen, C., Liu, Y., Jiang, T., Yu, H., Wu, Y., Wang, Y., Wang, F.J., Liu, Z., and Zhang, L.W. (2019). Bioactive polysaccharide nanoparticles improve radiation-induced abscopal effect through manipulation of dendritic cells. ACS Appl Mater Interfaces 11, 42661–42670.

    Article  CAS  PubMed  Google Scholar 

  • Prajapati, V.D., Jani, G.K., and Khanda, S.M. (2013). Pullulan: an exopolysaccharide and its various applications. Carbohydr Polyms 95, 540–549.

    Article  CAS  Google Scholar 

  • Qing, S., Lyu, C., Zhu, L., Pan, C., Wang, S., Li, F., Wang, J., Yue, H., Gao, X., Jia, R., et al. (2020). Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy. Adv Mater 32, e2002085.

    Article  PubMed  Google Scholar 

  • Sahin, U., and Türeci, Ö. (2018). Personalized vaccines for cancer immunotherapy. Science 359, 1355–1360.

    Article  CAS  PubMed  Google Scholar 

  • Scott, E.A., Stano, A., Gillard, M., Maio-Liu, A.C., Swartz, M.A., and Hubbell, J.A. (2012). Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials 33, 6211–6219.

    Article  CAS  PubMed  Google Scholar 

  • Seong, S.K., and Kim, H.W. (2010). Potentiation of Innate Immunity by β-glucans. Mycobiology 38, 144–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah, B.M., Palakurthi, S.S., Khare, T., Khare, S., and Palakurthi, S. (2020). Natural proteins and polysaccharides in the development of micro/nano delivery systems for the treatment of inflammatory bowel disease. Int J Biol Macromol 165, 722–737.

    Article  CAS  PubMed  Google Scholar 

  • Shan, W., Zheng, H., Fu, G., Liu, C., Li, Z., Ye, Y., Zhao, J., Xu, D., Sun, L., Wang, X., et al. (2019). Bioengineered nanocage from HBc protein for combination cancer immunotherapy. Nano Lett 19, 1719–1727.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R.P., Hidalgo, T., Cazade, P.A., Darcy, R., Cronin, M.F., Dorin, I., O’Driscoll, C. M., and Thompson, D. (2019). Self-assembled cationic β-cyclodextrin nanostructures for siRNA delivery. Mol Pharm 16, 1358–1366.

    Article  CAS  PubMed  Google Scholar 

  • Su, R., Chong, G., Dong, H., Gu, J., Zang, J., He, R., Sun, J., Zhang, T., Zhao, Y., Zheng, X., et al. (2021). Nanovaccine biomineralization for cancer immunotherapy: a NADPH oxidase-inspired strategy for improving antigen cross-presentation via lipid peroxidation. Biomaterials 277, 121089.

    Article  CAS  PubMed  Google Scholar 

  • Théry, C., Ostrowski, M., and Segura, E. (2009). Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9, 581–593.

    Article  PubMed  Google Scholar 

  • Toma, C.C., Aloisi, A., Bordoni, V., Di Corato, R., Rauner, M., Cuniberti, G., Delogu, L. G., and Rinaldi, R. (2018). Immune profiling of polysaccharide submicron vesicles. Biomacromolecules 19, 3560–3571.

    Article  CAS  PubMed  Google Scholar 

  • Torres, M.P., Wilson-Welder, J.H., Lopac, S.K., Phanse, Y., Carrillo-Conde, B., Ramer-Tait, A.E., Bellaire, B.H., Wannemuehler, M.J., and Narasimhan, B. (2011). Polyanhydride microparticles enhance dendritic cell antigen presentation and activation. Acta Biomater 7, 2857–2864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varypataki, E.M., Benne, N., Bouwstra, J., Jiskoot, W., and Ossendorp, F. (2017). Efficient eradication of established tumors in mice with cationic liposome-based synthetic long-peptide vaccines. Cancer Immunol Res 5, 222–233.

    Article  CAS  PubMed  Google Scholar 

  • Vermaelen, K. (2019). Vaccine strategies to improve anti-cancer cellular immune responses. Front Immunol 10, 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, D., Cui, Q., Yang, Y.J., Liu, A.Q., Zhang, G., and Yu, J.C. (2022). Application of dendritic cells in tumor immunotherapy and progress in the mechanism of antitumor effect of Astragalus polysaccharide (APS) modulating dendritic cells: a review. Biomed Pharmacother 155, 113541.

    Article  CAS  PubMed  Google Scholar 

  • Wen, R., Umeano, A.C., Kou, Y., Xu, J., and Farooqi, A.A. (2019). Nanoparticle systems for cancer vaccine. Nanomedicine 14, 627–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, D.S., Hirosue, S., Raczy, M.M., Bonilla-Ramirez, L., Jeanbart, L., Wang, R., Kwissa, M., Franetich, J.F., Broggi, M.A.S., Diaceri, G., et al. (2019). Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat Mater 18, 175–185.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Q., Gao, H., Vriesekoop, F., Liu, Z., He, J., and Liang, H. (2020). Calcium phosphate coated core-shell protein nanocarriers: robust stability, controlled release and enhanced anticancer activity for curcumin delivery. Mater Sci Eng-C 115, 111094.

    Article  CAS  Google Scholar 

  • Yang, P., Song, H., Feng, Z., Wang, C., Huang, P., Zhang, C., Kong, D., and Wang, W. (2019). Synthetic, supramolecular, and self-adjuvanting CD8+ T-cell epitope vaccine increases the therapeutic antitumor immunity. Adv Ther 2, 1900010.

    Article  Google Scholar 

  • Ye, X.C., Hao, Q., Ma, W.J., Zhao, Q.C., Wang, W.W., Yin, H.H., Zhang, T., Wang, M., Zan, K., Yang, X.X., et al. (2020). Dectin-1/Syk signaling triggers neuroinflammation after ischemic stroke in mice. J Neuroinflamm 17, 17.

    Article  CAS  Google Scholar 

  • Zhang, W., Zhou, H., Jiang, Y., He, J., Yao, Y., Wang, J., Liu, X., Leptihn, S., Hua, X., and Yu, Y. (2022). Acinetobacter baumannii outer membrane protein A induces pulmonary epithelial barrier dysfunction and bacterial translocation through the TLR2/IQGAP1 axis. Front Immunol 13, 927955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, L., Seth, A., Wibowo, N., Zhao, C.X., Mitter, N., Yu, C., and Middelberg, A.P.J. (2014). Nanoparticle vaccines. Vaccine 32, 327–337.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Key Project at Central Government Level: the ability establishment of sustainable use for valuable Chinese medicine resources (2060302-2305-04), CAMS Innovation Fund for Medical Sciences (2021-1-I2M-031, 2022-I2M-1-018, 2022-I2M-2-002), Jilin Provincial Fiscal Construction Program for High-Tech Industries and Technologies (2022C041-5, 20220401117YY), Hohhot Science and Technology Program (2021-Social-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobo Sun or Zhengqi Dong.

Ethics declarations

The author(s) declare that they have no conflict of interest. All animal procedures were approved by the Institutional Animal Care and Use Committee at the Institute of Medicinal Plant Development (ethical approval No. SLXD-20230905013; Date of ethical approval: September 6, 2023) and performed in accordance with the EU Directive 2010/63/EU for animal experiments.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Zhang, Y., Han, M. et al. Self-adjuvant Astragalus polysaccharide-based nanovaccines for enhanced tumor immunotherapy: a novel delivery system candidate for tumor vaccines. Sci. China Life Sci. 67, 680–697 (2024). https://doi.org/10.1007/s11427-023-2465-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-023-2465-x

Navigation