Skip to main content
Log in

Developing an efficient and visible prime editing system to restore tobacco 8-hydroxy-copalyl diphosphate gene for labdane diterpene Z-abienol biosynthesis

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Prime editing (PE) is a versatile CRISPR-Cas based precise genome-editing platform widely used to introduce a range of possible base conversions in various organisms. However, no PE systems have been shown to induce heritable mutations in tobacco, nor in any other dicot. In this study, we generated an efficient PE system in tobacco that not only introduced heritable mutations, but also enabled anthocyanin-based reporter selection of transgene-free T1 plants. This system was used to confer Z-abienol biosynthesis in the allotetraploid tobacco cultivar HHDJY by restoring a G>T conversion in the NtCPS2 gene. High levels of Z-abienol were detected in the leaves of homozygous T1 plants at two weeks after topping. This study describes an advance in PE systems and expands genome-editing toolbox in tobacco, even in dicots, for use in basic research and molecular breeding. And restoring biosynthesis of Z-abienol in tobacco might provide an efficient way to obtain Z-abienol in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anzalone, A.V., Koblan, L.W., and Liu, D.R. (2020). Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38, 824–844.

    CAS  PubMed  Google Scholar 

  • Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrero, A.F., Alvarez-Manzaneda, E.J., Altarejos, J., Salido, S., and Ramos, J.M. (1993). Synthesis of Ambrox® from (−)-sclareol and (+)-cis-abienol. Tetrahedron 49, 10405–10412.

    CAS  Google Scholar 

  • Biswas, S., Bridgeland, A., Irum, S., Thomson, M.J., and Septiningsih, E. M. (2022). Optimization of prime editing in rice, peanut, chickpea, and cowpea protoplasts by restoration of GFP activity. Int J Mol Sci 23, 9809.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, A.X., Qu, Y. F., Wang, G.P., Li, Y. Y., Luo, C.G., Feng, Q.F., Chen, Z.Q., Fu, X.K., Yang, A.G., Hu, R.S., et al. (2018). Study on key components and molecular basis responsible for the specific aroma traits of flue-cured tobacco Dabaijin599 (in Chinese). Chin Tob Sci 39, 1–9.

    Google Scholar 

  • Chen, C., Liu, X., Li, S., Liu, C., Zhang, Y., Luo, L., Miao, L., Yang, W., Xiao, Z., Zhong, Y., et al. (2022). Co-expression of transcription factors ZmC1 and ZmR2 establishes an efficient and accurate haploid embryo identification system in maize. Plant J 111, 1296–1307.

    CAS  PubMed  Google Scholar 

  • Chen, P.J., Hussmann, J.A., Yan, J., Knipping, F., Ravisankar, P., Chen, P. F., Chen, C., Nelson, J.W., Newby, G.A., Sahin, M., et al. (2021). Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652.e29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, L., Li, L., Liu, C., Liu, C., Geng, S., Li, X., Huang, C., Mao, L., Chen, S., and Xie, C. (2018). Genome editing and double-fluorescence proteins enable robust maternal haploid induction and identification in maize. Mol Plant 11, 1214–1217.

    CAS  PubMed  Google Scholar 

  • Fu, Q.J., Liu, Y.H., Du, Y.M., Wang, A.H., and Liu, X.M. (2019). Analysis of cembratriendiol content in tobaccos growing in China (in Chinese). Acta Tab Sin 25, 10–14.

    CAS  Google Scholar 

  • Gao, C. (2021). Genome engineering for crop improvement and future agriculture. Cell 184, 1621–1635.

    CAS  PubMed  Google Scholar 

  • Gao, X., Chen, J., Dai, X., Zhang, D., and Zhao, Y. (2016). An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiol 171, 1794–1800.

    PubMed  PubMed Central  Google Scholar 

  • He, L., Liu, H., Cheng, C., Xu, M., He, L., Li, L., Yao, J., Zhang, W., Zhai, Z., Luo, Q., et al. (2021). RNA sequencing reveals transcriptomic changes in tobacco (Nicotiana tabacum) following NtCPS2 knockdown. BMC Genomics 22, 467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He, Y., Zhu, M., Wang, L., Wu, J., Wang, Q., Wang, R., and Zhao, Y. (2018). Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants. Mol Plant 11, 1210–1213.

    CAS  PubMed  Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffmann, N.L., Wallroth, M., Eichholtz, D., Rogers, S.G., and Fraley, R.T. (1985). A simple and general method for transferring genes into plants. Science 227, 1229–1231.

    CAS  Google Scholar 

  • Hua, K., Jiang, Y., Tao, X., and Zhu, J. (2020). Precision genome engineering in rice using prime editing system. Plant Biotechnol J 18, 2167–2169.

    PubMed  PubMed Central  Google Scholar 

  • Jiang, Y., Chai, Y., Qiao, D., Wang, J., Xin, C., Sun, W., Cao, Z., Zhang, Y., Zhou, Y., Wang, X.C., et al. (2022a). Optimized prime editing efficiently generates glyphosate-resistant rice plants carrying homozygous TAP-IVS mutation in EPSPS. Mol Plant 15, 1–4.

    CAS  Google Scholar 

  • Jiang, Y.Y., Chai, Y.P., Lu, M.H., Han, X.L., Lin, Q., Zhang, Y., Zhang, Q., Zhou, Y., Wang, X.C., Gao, C., et al. (2020). Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol 21, 257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Z., Abdullah, Z., Zhang, S., Jiang, Y., Liu, R., and Xiao, Y. (2022b). Development and optimization of CRISPR prime editing system in photoautotrophic cells. Molecules 27, 1758.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, S., Lin, Q., Luo, Y., Zhu, Z., Liu, G., Li, Y., Chen, K., Qiu, J.L., and Gao, C. (2021). Genome-wide specificity of prime editors in plants. Nat Biotechnol 39, 1292–1299.

    CAS  PubMed  Google Scholar 

  • Kusano, H., Ohnuma, M., Mutsuro-Aoki, H., Asahi, T., Ichinosawa, D., Onodera, H., Asano, K., Noda, T., Horie, T., Fukumoto, K., et al. (2018). Establishment of a modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato. Sci Rep 8, 13753.

    PubMed  PubMed Central  Google Scholar 

  • Leffingwell, J.C. (1999). Basic chemical constituents of tobacco leaf and differences among tobacco types. Oxford: Blackwell Science.

    Google Scholar 

  • Li, H., Li, J., Chen, J., Yan, L., and Xia, L. (2020). Precise modifications of both exogenous and endogenous genes in rice by prime editing. Mol Plant 13, 671–674.

    CAS  PubMed  Google Scholar 

  • Li, H., Zhu, Z., Li, S., Li, J., Yan, L., Zhang, C., Ma, Y., and Xia, L. (2022a). Multiplex precision gene editing by a surrogate prime editor in rice. Mol Plant 15, 1077–1080.

    PubMed  Google Scholar 

  • Li, J., Chen, L., Liang, J., Xu, R., Jiang, Y., Li, Y., Ding, J., Li, M., Qin, R., and Wei, P. (2022b). Development of a highly efficient prime editor 2 system in plants. Genome Biol 23, 161.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Q., Jin, S., Zong, Y., Yu, H., Zhu, Z., Liu, G., Kou, L., Wang, Y., Qiu, J.L., Li, J., et al. (2021). High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat Biotechnol 39, 923–927.

    CAS  PubMed  Google Scholar 

  • Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A.V., Raguram, A., Doman, J.L., et al. (2020). Prime genome editing in rice and wheat. Nat Biotechnol 38, 582–585.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Zeng, J., Yuan, C., Guo, Y., Yu, H., Li, Y., and Huang, C. (2019). Cas9-PF, an early flowering and visual selection marker system, enhances the frequency of editing event occurrence and expedites the isolation of genome-edited and transgene-free plants. Plant Biotechnol J 17, 1191–1193.

    PubMed  PubMed Central  Google Scholar 

  • Lu, Y., Tian, Y., Shen, R., Yao, Q., Zhong, D., Zhang, X., and Zhu, J. (2021). Precise genome modification in tomato using an improved prime editing system. Plant Biotechnol J 19, 415–417.

    PubMed  Google Scholar 

  • Miller, S.M., Wang, T., Randolph, P.B., Arbab, M., Shen, M.W., Huang, T. P., Matuszek, Z., Newby, G.A., Rees, H.A., and Liu, D.R. (2020). Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol 38, 471–481.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, J.W., Randolph, P.B., Shen, S.P., Everette, K.A., Chen, P.J., Anzalone, A.V., An, M., Newby, G.A., Chen, J.C., Hsu, A., et al. (2022). Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol 40, 402–410.

    CAS  PubMed  Google Scholar 

  • Perroud, P.F., Guyon-Debast, A., Veillet, F., Kermarrec, M.P., Chauvin, L., Chauvin, J.E., Gallois, J.L., and Nogué, F. (2022). Prime Editing in the model plant Physcomitrium patens and its potential in the tetraploid potato. Plant Sci 316, 111162.

    CAS  PubMed  Google Scholar 

  • Qiu, F., Xing, S., Xue, C., Liu, J., Chen, K., Chai, T., and Gao, C. (2022). Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing. Sci China Life Sci 65, 731–738.

    CAS  PubMed  Google Scholar 

  • Ren, J., Meng, X., Hu, F., Liu, Q., Cao, Y., Li, H., Yan, C., Li, J., Wang, K., Yu, H., et al. (2021). Expanding the scope of genome editing with SpG and SpRY variants in rice. Sci China Life Sci 64, 1784–1787.

    CAS  PubMed  Google Scholar 

  • Sallaud, C., Giacalone, C., Töfer, R., Goepfert, S., Bakaher, N., Rösti, S., and Tissier, A. (2012). Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J 72, 1–17.

    CAS  PubMed  Google Scholar 

  • Seo, S., Gomi, K., Kaku, H., Abe, H., Seto, H., Nakatsu, S., Neya, M., Kobayashi, M., Nakaho, K., Ichinose, Y., et al. (2012). Identification of natural diterpenes that inhibit bacterial wilt disease in tobacco, tomato and Arabidopsis. Plant Cell Physiol 53, 1432–1444.

    CAS  PubMed  Google Scholar 

  • Severson, R., Johnson, A., and Jackson, D. (1985). Cuticular constituents of tobacco: factors affecting their production and their role in insect and disease resistance and smoke quality. Recent Adv Tobacco Sci 11, 105–174.

    CAS  Google Scholar 

  • Severson, R.F., Arrendale, R.F., Chortyk, O.T., Johnson, A.W., Jackson, D. M., Gwynn, G.R., Chaplin, J.F., and Stephenson, M.G. (1984). Quantitation of the major cuticular components from green leaf of different tobacco types. J Agric Food Chem 32, 566–570.

    CAS  Google Scholar 

  • Sretenovic, S., Yin, D., Levav, A., Selengut, J.D., Mount, S.M., and Qi, Y. (2021). Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences. Plant Commun 2, 100101.

    CAS  PubMed  Google Scholar 

  • Tan, J., Zeng, D., Zhao, Y., Wang, Y., Liu, T., Li, S., Xue, Y., Luo, Y., Xie, X., Chen, L., et al. (2022). PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants. Plant Biotechnol J 20, 934–943.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, X., Sretenovic, S., Ren, Q., Jia, X., Li, M., Fan, T., Yin, D., Xiang, S., Guo, Y., Liu, L., et al. (2020). Plant prime editors enable precise gene editing in rice cells. Mol Plant 13, 667–670.

    CAS  PubMed  Google Scholar 

  • Walton, R.T., Christie, K.A., Whittaker, M.N., and Kleinstiver, B.P. (2020). Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, G.P. (2016). Functional analysis and marker development of cis-abienol synthesis gene in tobacco (in Chinese). Dissertation for Master’s Degree. Beijing: Chinese Academy of Agricultural Sciences.

    Google Scholar 

  • Wang, L., Kaya, H.B., Zhang, N., Rai, R., Willmann, M.R., Carpenter, S.C.D., Read, A.C., Martin, F., Fei, Z., Leach, J.E., et al. (2021). Spelling changes and fluorescent tagging with prime editing vectors for plants. Front Genome Ed 3, 617553.

    PubMed  PubMed Central  Google Scholar 

  • Wang, M., Xu, Z., Gosavi, G., Ren, B., Cao, Y., Kuang, Y., Zhou, C., Spetz, C., Yan, F., Zhou, X., et al. (2020a). Targeted base editing in rice with CRISPR/ScCas9 system. Plant Biotechnol J 18, 1645–1647.

    PubMed  PubMed Central  Google Scholar 

  • Wang, W.G., Wang, H., Du, L.Q., Li, M., Chen, L., Yu, J., Cheng, G.G., Zhan, M.T., Hu, Q.F., Zhang, L., et al. (2020b). Molecular basis for the biosynthesis of an unusual chain-fused polyketide, gregatin A. J Am Chem Soc 142, 8464–8472.

    CAS  PubMed  Google Scholar 

  • Xu, J., Yin, Y., Jian, L., Han, B., Chen, Z., Yan, J., and Liu, X. (2021). Seeing is believing: a visualization toolbox to enhance selection efficiency in maize genome editing. Plant Biotechnol J 19, 872–874.

    PubMed  PubMed Central  Google Scholar 

  • Xu, R., Li, J., Liu, X., Shan, T., Qin, R., and Wei, P. (2020a). Development of plant prime-editing systems for precise genome editing. Plant Commun 1, 100043.

    PubMed  PubMed Central  Google Scholar 

  • Xu, R., Qin, R., Xie, H., Li, J., Liu, X., Zhu, M., Sun, Y., Yu, Y., Lu, P., and Wei, P. (2022a). Genome editing with type II-C CRISPR-Cas9 systems from Neisseria meningitidis in rice. Plant Biotechnol J 20, 350–359.

    PubMed  Google Scholar 

  • Xu, W., Zhang, C., Yang, Y., Zhao, S., Kang, G., He, X., Song, J., and Yang, J. (2020b). Versatile nucleotides substitution in plant using an improved prime editing system. Mol Plant 13, 675–678.

    CAS  PubMed  Google Scholar 

  • Xu, W., Yang, Y., Yang, B., Krueger, C.J., Xiao, Q., Zhao, S., Zhang, L., Kang, G., Wang, F., Yi, H., et al. (2022b). A design optimized prime editor with expanded scope and capability in plants. Nat Plants 8, 45–52.

    CAS  PubMed  Google Scholar 

  • Yan, Y., Zhu, J., Qi, X., Cheng, B., Liu, C., and Xie, C. (2021). Establishment of an efficient seed fluorescence reporter-assisted CRISPR/Cas9 gene editing in maize. J Integr Plant Biol 63, 1671–1680.

    CAS  PubMed  Google Scholar 

  • Yuan, G., Hassan, M.M., Yao, T., Lu, H., Vergara, M.M., Labbé, J.L., Muchero, W., Pan, C., Chen, J.G., Tuskan, G.A., et al. (2021). Plant-based biosensors for detecting CRISPR-mediated genome engineering. ACS Synth Biol 10, 3600–3603.

    CAS  PubMed  Google Scholar 

  • Zerbe, P., and Bohlmann, J. (2015). Enzymes for synthetic biology of ambroxide-related diterpenoid fragrance compounds. Adv Biochem Eng Biotechnol 148, 427–447.

    CAS  PubMed  Google Scholar 

  • Zhang, C., Wang, F., Zhao, S., Kang, G., Song, J., Li, L., and Yang, J. (2020). Highly efficient CRISPR-SaKKH tools for plant multiplex cytosine base editing. Crop J 8, 418–423.

    Google Scholar 

  • Zhang, C., Wang, Y., Wang, F., Zhao, S., Song, J., Feng, F., Zhao, J., and Yang, J. (2021). Expanding base editing scope to near-PAMless with engineered CRISPR/Cas9 variants in plants. Mol Plant 14, 191–194.

    CAS  PubMed  Google Scholar 

  • Zong, Y., Liu, Y., Xue, C., Li, B., Li, X., Wang, Y., Li, J., Liu, G., Huang, X., Cao, X., et al. (2022). An engineered prime editor with enhanced editing efficiency in plants. Nat Biotechnol 40, 1394–1402.

    CAS  PubMed  Google Scholar 

  • Zou, J., Meng, X., Liu, Q., Shang, M., Wang, K., Li, J., Yu, H., and Wang, C. (2022). Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice. Sci China Life Sci 65, 2328–2331.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Scholars Program (BSP041), Financial Special Fund of Beijing Academy of Agriculture and Forestry Sciences (CZZJ202206), the key projects of YNZY (2022JY02) and CNTC (110202101034, JY-11). The authors thank Dr. Jiuran Zhao for helpful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingyou Xia, Weiguang Wang or Jinxiao Yang.

Ethics declarations

Compliance and ethics The authors submitted patent applications based on the results reported in this paper, and they declare that they have no conflict of interest.

Electronic supplementary material

11427_2022_2396_MOESM1_ESM.docx

Supporting Information: Developing an efficient and visible prime editing system to restore tobacco 8-hydroxy-copalyl diphosphate gene for labdane diterpene Z-abienol biosynthesis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, L., Zhang, C. et al. Developing an efficient and visible prime editing system to restore tobacco 8-hydroxy-copalyl diphosphate gene for labdane diterpene Z-abienol biosynthesis. Sci. China Life Sci. 66, 2910–2921 (2023). https://doi.org/10.1007/s11427-022-2396-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2396-x

Navigation