Skip to main content
Log in

Pseudomonas aeruginosa regulator PvrA binds simultaneously to multiple pseudo-palindromic sites for efficient transcription activation

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Tetracycline repressor (TetR) family regulators (TFRs) are the largest group of DNA-binding transcription factors and are widely distributed in bacteria and archaea. TFRs play vital roles in controlling the expression of various genes and regulating diverse physiological processes. Recently, a TFR protein Pseudomonas virulence regulator A (PvrA), was identified from Pseudomonas aeruginosa as the transcriptional activator of genes involved in fatty acid utilization and bacterial virulence. Here, we show that PvrA can simultaneously bind to multiple pseudo-palindromic sites and upregulate the expression levels of target genes. Cryo-electron microscopy (cryo-EM) analysis indicates the simultaneous DNA recognition mechanism of PvrA and suggests that the bound DNA fragments consist of a distorted B-DNA double helix. The crystal structure and functional analysis of PvrA reveal a hinge region that secures the correct domain motion for recognition of the promiscuous promoter. Additionally, our results showed that mutations disrupting the regulatory hinge region have differential effects on biofilm formation and pyocyanin biosynthesis, resulting in attenuated bacterial virulence. Collectively, these findings will improve the understanding of the relationship between the structure and function of the TetR family and provide new insights into the mechanism of regulation of P. aeruginosa virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J. J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystlogr D Biol Crystlogr 66, 213–221.

    Article  CAS  Google Scholar 

  • Afonine, P.V., Poon, B.K., Read, R.J., Sobolev, O.V., Terwilliger, T.C., Urzhumtsev, A., and Adams, P.D. (2018). Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystlogr D Struct Biol 74, 531–544.

    Article  CAS  Google Scholar 

  • Alatoom, A.A., Aburto, R., Hamood, A.N., and Colmer-Hamood, J.A. (2007). VceR negatively regulates the vceCAB MDR efflux operon and positively regulates its own synthesis in Vibrio cholerae 569B. Can J Microbiol 53, 888–900.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, T.L., Williams, N., Misleh, C., and Li, W.W. (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34, W369–W373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball, A.S., and van Kessel, J.C. (2019). The master quorum-sensing regulators LuxR/HapR directly interact with the alpha subunit of RNA polymerase to drive transcription activation in Vibrio harveyi and Vibrio cholerae. Mol Microbiol 111, 1317–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banin, E., Vasil, M.L., and Greenberg, E.P. (2005). Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA 102, 11076–11081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock, T., Volz, C., Hering, V., Scrima, A., Müller, R., and Blankenfeldt, W. (2017). The AibR-isovaleryl coenzyme A regulator and its DNA binding site—a model for the regulation of alternative de novo isovaleryl coenzyme A biosynthesis in Myxococcus xanthus. Nucleic Acids Res 45, 2166–2178.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, A., Cui, Y., Hasegawa, H., and Chatterjee, A.K. (2007). PsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. tomato strain DC3000. Appl Environ Microbiol 73, 3684–3694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, M., Dai, W., Sun, S.Y., Jonasch, D., He, C.Y., Schmid, M.F., Chiu, W., and Ludtke, S.J. (2017). Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat Methods 14, 983–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, V.B., Arendall Iii, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystlogr D Biol Crystlogr 66, 12–21.

    Article  CAS  Google Scholar 

  • Cheng, Y., Yang, S., Jia, M., Zhao, L., Hou, C., You, X., Zhao, J., and Chen, A. (2016). Comparative study between macrolide regulatory proteins MphR(A) and MphR(E) in ligand identification and DNA binding based on the rapid in vitro detection system. Anal Bioanal Chem 408, 1623–1631.

    Article  CAS  PubMed  Google Scholar 

  • Chovancova, E., Pavelka, A., Benes, P., Strnad, O., Brezovsky, J., Kozlikova, B., Gora, A., Sustr, V., Klvana, M., Medek, P., et al. (2012). CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 8, e1002708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christen, S., Srinivas, A., Bähler, P., Zeller, A., Pridmore, D., Bieniossek, C., Baumann, U., and Erni, B. (2006). Regulation of the dha operon of Lactococcus lactis: a deviation from the rule followed by the Tetr family of transcription regulators. J Biol Chem 281, 23129–23137.

    Article  CAS  PubMed  Google Scholar 

  • Cuthbertson, L., and Nodwell, J.R. (2013). The TetR family of regulators. Microbiol Mol Biol Rev 77, 440–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, D.G., and Geesey, G.G. (1995). Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61, 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delano, W.L. (2002). The PyMol Molecular Graphics System. San Carlos: DeLano Scientific. 442–454.

    Google Scholar 

  • Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Lefort, V., Lescot, M., et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36, W465–W469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolan, S.K., Pereira, G., Silva-Rocha, R., and Welch, M. (2019). Transcriptional regulation of central carbon metabolism in Pseudomonas aeruginosa. Microb Biotechnol 13, 285–289.

    Article  PubMed  PubMed Central  Google Scholar 

  • Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystlogr D Biol Crystlogr 60, 2126–2132.

    Article  Google Scholar 

  • Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystlogr D Biol Crystlogr 66, 486–501.

    Article  CAS  Google Scholar 

  • Friedman, L., and Kolter, R. (2004). Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186, 4457–4465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grau, F.C., Jaeger, J., Groher, F., Suess, B., and Muller, Y.A. (2020). The complex formed between a synthetic RNA aptamer and the transcription repressor TetR is a structural and functional twin of the operator DNA-TetR regulator complex. Nucleic Acids Res 48, 3366–3378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, B., and Lidstrom, M. (2012). CcrR, a TetR family transcriptional regulator, activates the transcription of a gene of the ethylmalonyl coenzyme a pathway in Methylobacterium extorquens AM1. J Bacteriol 194, 2802–2808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikushima, S., and Boeke, J.D. (2017). New orthogonal transcriptional switches derived from Tet repressor homologues for Saccharomyces cerevisiae regulated by 2,4-diacetylphloroglucinol and other ligands. ACS Synth Biol 6, 497–506.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, M.X., Yin, M., Wu, S.H., Han, X.L., Ji, K.Y., Wen, M.L., and Lu, T. (2017). GdmRIII, a TetR family transcriptional regulator, controls geldanamycin and elaiophylin biosynthesis in Streptomyces autolyticus CGMCC0516. Sci Rep 7, 4803.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang, Y., Nguyen, D.T., Son, M.S., and Hoang, T.T. (2008). The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 β-oxidation operon. Microbiology 154, 1584–1598.

    Article  CAS  PubMed  Google Scholar 

  • Keen, N.T., Tamaki, S., Kobayashi, D., and Trollinger, D. (1988). Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70, 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D.E., Chivian, D., and Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32, W526–W531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krug, M., Weiss, M.S., Heinemann, U., and Mueller, U. (2012). XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. J Appl Crystlogr 45, 568–572.

    Article  CAS  Google Scholar 

  • Kurachi, M. (1958). Studies on the Biosynthesis of Pyocyanine. (II): Isolation and Determination of Pyocyanine. Bull Inst Chem Res Kyoto Univ 39, 174–187.

    Google Scholar 

  • Lara, J., Diacovich, L., Trajtenberg, F., Larrieux, N., Malchiodi, E.L., Fernández, M.M., Gago, G., Gramajo, H., and Buschiazzo, A. (2020). Mycobacterium tuberculosis FasR senses long fatty acyl-CoA through a tunnel and a hydrophobic transmission spine. Nat Commun 11, 3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, T., He, L., Li, C., Kang, M., Song, Y., Zhu, Y., Shen, Y., Zhao, N., Zhao, C., Yang, J., et al. (2020). Molecular basis of the lipid-induced MucA-MucB dissociation in Pseudomonas aeruginosa. Commun Biol 3, 418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Yang, M., and He, Z.G. (2016). Novel TetR family transcriptional factor regulates expression of multiple transport-related genes and affects rifampicin resistance in Mycobacterium smegmatis. Sci Rep 6, 27489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, N., Guan, H., Niu, G., Jiang, L., Li, Y., Zhang, J., Li, J., and Tan, H. (2021). Molecular mechanism of mureidomycin biosynthesis activated by introduction of an exogenous regulatory gene ssaA into Streptomyces roseosporus. Sci China Life Sci 64, 1949–1963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longo, F., Rampioni, G., Bondî, R., Imperi, F., Fimia, G.M., Visca, P., Zennaro, E., and Leoni, L.A. (2013). A new transcriptional repressor of the Pseudomonas aeruginosa quorum sensing receptor gene lasR. PLoS ONE 8, e69554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, P., Wang, Y., Zhang, Y., Hu, Y., Thompson, K.M., and Chen, S. (2016). RpoS-dependent sRNA RgsA regulates Fis and AcpP in Pseudomonas aeruginosa. Mol Microbiol 102, 244–259.

    Article  CAS  PubMed  Google Scholar 

  • Mavrodi, D.V., Bonsall, R.F., Delaney, S.M., Soule, M.J., Phillips, G., and Thomashow, L.S. (2001). Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183, 6454–6465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, D.J., Zhang, Y.M., Subramanian, C., Rock, C.O., and White, S.W. (2010). Structural basis for the transcriptional regulation of membrane lipid homeostasis. Nat Struct Mol Biol 17, 971–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minor, W., Cymborowski, M., Otwinowski, Z., and Chruszcz, M. (2006). HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystlogr D Biol Crystlogr 62, 859–866.

    Article  Google Scholar 

  • Miyata, S., Casey, M., Frank, D.W., Ausubel, F.M., and Drenkard, E. (2003). Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun 71, 2404–2413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman, J.D., Russell, M.M., Fan, L., Wang, Y.X., Gonzalez-Gutierrez, G., and van Kessel, J.C. (2021). The DNA binding domain of the Vibrio vulnificus SmcR transcription factor is flexible and binds diverse DNA sequences. Nucleic Acids Res 49, 5967–5984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oluyombo, O., Penfold, C.N., and Diggle, S.P. (2019). Competition in biofilms between cystic fibrosis isolates of pseudomonas aeruginosa is shaped by R-Pyocins. mBio 10, e01828–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, X., Fan, Z., Chen, L., Liu, C., Bai, F., Wei, Y., Tian, Z., Dong, Y., Shi, J., Chen, H., et al. (2020). PvrA is a novel regulator that contributes to Pseudomonas aeruginosa pathogenesis by controlling bacterial utilization of long chain fatty acids. Nucleic Acids Res 48, 5967–5985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, X., Liang, H., Zhao, X., Zhang, Q., Chen, L., Yue, Z., Yin, L., Jin, Y., Bai, F., Cheng, Z., et al. (2023). Regulatory and structural mechanisms of PvrA-mediated regulation of the PQS quorum-sensing system and PHA biosynthesis in Pseudomonas aeruginosa. Nucleic Acids Res 51, 2691–2708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, H., Ro, Y.T., and Kim, Y.M. (2011). MdoR is a novel positive transcriptional regulator for the oxidation of methanol in Mycobacterium sp. strain JC1. J Bacteriol 193, 6288–6294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos, J.L., Martínez-Bueno, M., Molina-Henares, A.J., Terán, W., Watanabe, K., Zhang, X., Gallegos, M.T., Brennan, R., and Tobes, R. (2005). The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69, 326–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  • Rohou, A., and Grigorieff, N. (2015). CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol 192, 216–221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, Y., Luo, G., Zhu, Y., Li, T., Li, C., He, L., Zhao, N., Zhao, C., Yang, J., Huang, Q., et al. (2021a). Pseudomonas aeruginosa antitoxin HigA functions as a diverse regulatory factor by recognizing specific pseudopalindromic DNA motifs. Environ Microbiol 23, 1541–1558.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y., Zhang, S., Luo, G., Shen, Y., Li, C., Zhu, Y., Huang, Q., Mou, X., Tang, X., Liu, T., et al. (2021b). Type II antitoxin HigA is a key virulence regulator in Pseudomonas aeruginosa. ACS Infect Dis 7, 2930–2940.

    Article  CAS  PubMed  Google Scholar 

  • Swartzman, E., Silverman, M., and Meighen, E.A. (1992). The luxR gene product of Vibrio harveyi is a transcriptional activator of the lux promoter. J Bacteriol 174, 7490–7493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarazona, N.A., Hernández-Arriaga, A.M., Kniewel, R., and Prieto, M.A. (2020). Phasin interactome reveals the interplay of PhaF with the polyhydroxyalkanoate transcriptional regulatory protein PhaD in Pseudomonas putida. Environ Microbiol 22, 3922–3936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, K., Sybers, D., Maklad, H.R., Lemmens, L., Lewyllie, C., Zhou, X., Schult, F., Bräsen, C., Siebers, B., Valegård, K., et al. (2019). A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius. Nat Commun 10, 1542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Wu, H., Xiao, Q., Zhou, H., Li, M., Xu, Q., Wang, Q., Yu, F., and He, J. (2021a). Crystal structure details of Vibrio fischeri DarR and mutant DarR-M202I from LTTR family reveals their activation mechanism. Int J Biol Macromol 183, 2354–2363.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Cen, X.F., Zhao, G.P., and Wang, J. (2012). Characterization of a new GlnR binding box in the promoter of amtB in Streptomyces coelicolor inferred a PhoP/GlnR competitive binding mechanism for transcriptional regulation of amtB. J Bacteriol 194, 5237–5244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Guo, Y., Li, G., Liu, C., Wang, L., Zhang, A., Yan, Z., and Song, C. (2021b). The push-to-open mechanism of the tethered mechanosensitive ion channel NompC. eLife 10, e58388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wozniak, D.J., and Ohman, D.E. (1994). Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol 176, 6007–6014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo, H.K., Park, Y.W., and Lee, J.Y. (2017). Structural basis of operator sites recognition and effector binding in the TetR family transcription regulator FadR. Nucleic Acids Res 45, 4244–4254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Z., Reichheld, S.E., Savchenko, A., Parkinson, J., and Davidson, A.R. (2010). A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators. J Mol Biol 400, 847–864.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, K. (2015). Gctf: real-time CTF determination and correction. J Struct Biol 193, 1–12.

    Article  PubMed  Google Scholar 

  • Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y., and Agard, D.A. (2017). MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14, 331–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, X., Vink, M., Klaver, B., Berkhout, B., and Das, A.T. (2006). Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Ther 13, 1382–1390.

    Article  CAS  PubMed  Google Scholar 

  • Zivanov, J., Nakane, T., Forsberg, B.O., Kimanius, D., Hagen, W.J., Lindahl, E., and Scheres, S.H. (2018). New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministry of Science and Technology of China (2022YFC2303700, 2021YFA1301900). The National Natural Science Foundation of China (81871615, 32222040, 32070049), Tianjin Synthetic Biotechnology Innovation Capacity Improvement Action (TSBICIP-KJGG-008). And this work was supported in part by a Tibet Science Foundation grant (XZ202001ZY0036 N) to Yonghong Zhou. Cryo-EM data were collected at SKLB West China Cryo-EM Center and processed at SKLB Duyu High Performance Computing Center in Sichuan University. We thank National Center for Protein Sciences Shanghai (NCPSS) beamlines BL18U and BL19U allowance. We thank the staff at BL17B1/BL18U1/BL19U1 beamlines at SSRF of the National Facility for Protein Science in Shanghai (NFPS), Shanghai Advanced Research Institute, Chinese Academy of Sciences, for providing technical support in X-ray diffraction data collection and analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Tang, Zhaoming Su or Rui Bao.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Supporting Information

11427_2022_2363_MOESM1_ESM.docx

Pseudomonas aeruginosa regulator PvrA binds simultaneously to multiple pseudo-palindromic sites for efficient transcription activation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Luo, B., Mou, X. et al. Pseudomonas aeruginosa regulator PvrA binds simultaneously to multiple pseudo-palindromic sites for efficient transcription activation. Sci. China Life Sci. 67, 900–912 (2024). https://doi.org/10.1007/s11427-022-2363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2363-y

Navigation