Skip to main content
Log in

Nanosecond pulsed electric fields prime mesenchymal stem cells to peptide ghrelin and enhance chondrogenesis and osteochondral defect repair in vivo

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are important cell sources in cartilage tissue development and homeostasis, and multiple strategies have been developed to improve MSCs chondrogenic differentiation with an aim of promoting cartilage regeneration. Here we report the effects of combining nanosecond pulsed electric fields (nsPEFs) followed by treatment with ghrelin (a hormone that stimulates release of growth hormone) to regulate chondrogenesis of MSCs. nsPEFs and ghrelin were observed to separately enhance the chondrogenesis of MSCs, and the effects were significantly enhanced when the bioelectric stimulation and hormone were combined, which in turn improved osteochondral tissue repair of these cells within Sprague Dawley rats. We further found that nsPEFs can prime MSCs to be more receptive to subsequent stimuli of differentiation by upregulated Oct4/Nanog and activated JNK signaling pathway. Ghrelin initiated chondrogenic differentiation by activation of ERK1/2 signaling pathway, and RNA-seq results indicated 243 genes were regulated, and JAK-STAT signaling pathway was involved. Interestingly, the sequential order of applying these two stimuli is critical, with nsPEFs pretreatment followed by ghrelin enhanced chondrogenesis of MSCs in vitro and subsequent cartilage regeneration in vivo, but not vice versa. This synergistic prochondrogenic effects provide us new insights and strategies for future cell-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaron, R.K., Wang, S., and Ciombor, D.M.K. (2002). Upregulation of basal TGFβl levels by EMF coincident with chondrogenesis—implications for skeletal repair and tissue engineering. J Orthop Res 20, 233–240.

    Article  CAS  PubMed  Google Scholar 

  • Baek, S., Quan, X., Kim, S., Lengner, C., Park, J.K., and Kim, J. (2014). Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state. ACS Nano 8, 10125–10138.

    Article  CAS  PubMed  Google Scholar 

  • Barbosa, I., Garcia, S., Barbier-Chassefière, V., Caruelle, J.P., Martelly, I., and Papy-García, D. (2003). Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology 13, 647–653.

    Article  CAS  PubMed  Google Scholar 

  • Beebe, S.J., Schoenbach, K.H., and Heller, R. (2010). Bioelectric applications for treatment of melanoma. Cancers 2, 1731–1770.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caminos, J.E., Gualillo, O., Lago, F., Otero, M., Blanco, M., Gallego, R., Garcia-Caballero, T., Goldring, M.B., Casanueva, F.F., Gomez-Reino, J. J., et al. (2005). The endogenous growth hormone secretagogue (ghrelin) is synthesized and secreted by chondrocytes. Endocrinology 146, 1285–1292.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Li, Y., Wang, B., Yang, J., Heng, B.C., Yang, Z., Ge, Z., and Lin, J. (2018). Tgf-β1 affinity peptides incorporated within a chitosan sponge scaffold can significantly enhance cartilage regeneration. J Mater Chem B 6, 675–687.

    Article  PubMed  Google Scholar 

  • Craft, A.M., Rockel, J.S., Nartiss, Y., Kandel, R.A., Alman, B.A., and Keller, G.M. (2015). Generation of articular chondrocytes from human pluripotent stem cells. Nat Biotechnol 33, 638–645.

    Article  CAS  PubMed  Google Scholar 

  • De Mattei, M., Pellati, A., Pasello, M., Ongaro, A., Setti, S., Massari, L., Gemmati, D., and Caruso, A. (2004). Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage. Osteoarthr Cartil 12, 793–800.

    Article  Google Scholar 

  • Decker, R.S., Koyama, E., Enomoto-Iwamoto, M., Maye, P., Rowe, D., Zhu, S., Schultz, P.G., and Pacifici, M. (2014). Mouse limb skeletal growth and synovial joint development are coordinately enhanced by kartogenin. Dev Biol 395, 255–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, C., Parameswaran, V., Cicuttini, F., Burgess, J., Zhai, G., Quinn, S., and Jones, G. (2008). Association between leptin, body composition, sex and knee cartilage morphology in older adults: The tasmanian older adult cohort (TASOAC) study. Ann Rheum Dis 67, 1256–1261.

    Article  CAS  PubMed  Google Scholar 

  • Esfandiari, E., Roshankhah, S., Mardani, M., Hashemibeni, B., Naghsh, E., Kazemi, M., and Salahshoor, M. (2014). The effect of high frequency electric field on enhancement of chondrogenesis in human adipose-derived stem cells. Iran J Basic Med Sci 17, 571–576.

    PubMed  PubMed Central  Google Scholar 

  • Fan, L., Chen, J., Tao, Y., Heng, B.C., Yu, J., Yang, Z., and Ge, Z. (2019). Enhancement of the chondrogenic differentiation of mesenchymal stem cells and cartilage repair by ghrelin. J Orthop Res 37, 1387–1397.

    Article  CAS  PubMed  Google Scholar 

  • Foyt, D.A., Taheem, D.K., Ferreira, S.A., Norman, M.D.A., Petzold, J., Jell, G., Grigoriadis, A.E., and Gentleman, E. (2019). Hypoxia impacts human msc response to substrate stiffness during chondrogenic differentiation. Acta Biomater 89, 73–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, G., Ferrari, D., Dealy, C.N., and Kosher, R.A. (2010). Direct and progressive differentiation of human embryonic stem cells into the chondrogenic lineage. J Cell Physiol 224, 664–671.

    Article  CAS  PubMed  Google Scholar 

  • Grogan, S.P., Barbero, A., Winkelmann, V., Rieser, F., Fitzsimmons, J.S., O’Driscoll, S., Martin, I., and Mainil-Varlet, P. (2006). Visual histological grading system for the evaluation of in vitro—generated neocartilage. Tissue Eng 12, 2141–2149.

    Article  PubMed  Google Scholar 

  • Guo, W., Zhang, X., Yu, X., Wang, S., Qiu, J., Tang, W., Li, L., Liu, H., and Wang, Z.L. (2016). Self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene-poly(3,4-ethylenedioxythiophene) hybrid microfibers. ACS Nano 10, 5086–5095.

    Article  CAS  PubMed  Google Scholar 

  • Hanada, K., Solchaga, L.A., Caplan, A.I., Hering, T.M., Goldberg, V.M., Yoo, J.U., and Johnstone, B. (2001). BMP-2 induction and TGF-β1 modulation of rat periosteal cell chondrogenesis. J Cell Biochem 81, 284–294.

    Article  CAS  PubMed  Google Scholar 

  • Handorf, A.M., and Li, W.J. (2014). Induction of mesenchymal stem cell chondrogenesis through sequential administration of growth factors within specific temporal windows. J Cell Physiol 229, 162–171.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Bule, M.L., Angeles Trillo, M., Martinez Garcia, M.A., Abilahoud, C., and Ubeda, A. (2017). Chondrogenic differentiation of adipose-derived stem cells by radiofrequency electric stimulation. J Stem Cell Res Ther 7, 2.

    Article  Google Scholar 

  • Hess, R., Jaeschke, A., Neubert, H., Hintze, V., Moeller, S., Schnabelrauch, M., Wiesmann, H.P., Hart, D.A., and Scharnweber, D. (2012). Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs. Biomaterials 33, 8975–8985.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Chen, L., Zhang, S., Tong, T., Zhang, W., Liu, W., Xu, G., Tuan, R.S., Heng, B.C., Crawford, R., et al. (2013). Incorporation of bioactive polyvinylpyrrolidone-iodine within bilayered collagen scaffolds enhances the differentiation and subchondral osteogenesis of mesenchymal stem cells. Acta Biomater 9, 8089–8098.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.H., Jin, H.J., Heo, J., Ju, H., Lee, H.Y., Kim, S., Lee, S., Lim, J., Jeong, S.Y., Kwon, J.H., et al. (2018). Small hypoxia-primed mesenchymal stem cells attenuate graft-versus-host disease. Leukemia 32, 2672–2684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima, M., and Kangawa, K. (2005). Ghrelin: Structure and function. Physiol Rev 85, 495–522.

    Article  CAS  PubMed  Google Scholar 

  • Kusuyama, J., Bandow, K., Shamoto, M., Kakimoto, K., Ohnishi, T., and Matsuguchi, T. (2014). Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. J Biol Chem 289, 10330–10344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusuyama, J., Hwan Seong, C., Ohnishi, T., Bandow, K., and Matsuguchi, T. (2016). 10. Low-intensity pulsed ultrasound (LIPUS) stimulation helps to maintain the differentiation potency of mesenchymal stem cells by induction in nanog protein transcript levels and phosphorylation. J Orthop Trauma 30, S4–S5.

    Article  PubMed  Google Scholar 

  • Li, K., Jiang, Y., Yang, Z., Heng, B.C., Tian, H., and Ge, Z. (2021). Can upregulation of pluripotency genes enhance stemness of mesenchymal stem cells? Stem Cell Rev Rep 17, 1505–1507.

    Article  PubMed  Google Scholar 

  • Li, K., Ning, T., Wang, H., Jiang, Y., Zhang, J., and Ge, Z. (2020). Nanosecond pulsed electric fields enhance mesenchymal stem cells differentiation via DNMT1-regulated OCT4/NANOG gene expression. Stem Cell Res Ther 11, 308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mainil-Varlet, P., Aigner, T., Brittberg, M., Bullough, P., Hollander, A., Hunziker, E., Kandel, R., Nehrer, S., Pritzker, K., Roberts, S., et al. (2003). Histological assessment of cartilage repair. J Bone Joint Surg 85, 45–57.

    Article  PubMed  Google Scholar 

  • Mardani, M., Roshankhah, S., Hashemibeni, B., Salahshoor, M., Naghsh, E., and Esfandiari, E. (2016). Induction of chondrogenic differentiation of human adipose-derived stem cells by low frequency electric field. Adv Biomed Res 5, 97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martín, A.R., Patel, J.M., Zlotnick, H.M., Carey, J.L., and Mauck, R.L. (2019). Emerging therapies for cartilage regeneration in currently excluded ‘red knee’ populations. NPJ Regen Med 4, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martos-Moreno, G.A., Barrios, V., Soriano-Guillen, L., and Argente, J. (2006). Relationship between adiponectin levels, acylated ghrelin levels, and short-term body mass index changes in children with diabetes mellitus type 1 at diagnosis and after insulin therapy. Eur J Endocrinol 155, 757–761.

    Article  CAS  PubMed  Google Scholar 

  • Mayer-Wagner, S., Passberger, A., Sievers, B., Aigner, J., Summer, B., Schiergens, T.S., Jansson, V., and Müller, P.E. (2011). Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics 32, 283–290.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, M.K., Huey, D.J., Hu, J.C., and Athanasiou, K.A. (2015). TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells 33, 762–773.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, M.P., Koepke, L.S., Lopez, M.T., Tong, X., Ambrosi, T.H., Gulati, G.S., Marecic, O., Wang, Y., Ransom, R.C., Hoover, M.Y., et al. (2020). Articular cartilage regeneration by activated skeletal stem cells. Nat Med 26, 1583–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning, T., Guo, J., Zhang, K., Li, K., Zhang, J., Yang, Z., and Ge, Z. (2019a). Nanosecond pulsed electric fields enhanced chondrogenic potential of mesenchymal stem cells via JNK/CREB-STAT3 signaling pathway. Stem Cell Res Ther 10, 45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning, T., Zhang, K., Chin Heng, B., and Ge, Z. (2019b). Diverse effects of pulsed electrical stimulation on cells—with a focus on chondrocytes and cartilage regeneration. Eur Cell Mater 38, 79–93.

    Article  CAS  PubMed  Google Scholar 

  • Qu, R., Chen, X., Wang, W., Qiu, C., Ban, M., Guo, L., Vasilev, K., Chen, J., Li, W., and Zhao, Y. (2018). Ghrelin protects against osteoarthritis through interplay with Akt and NF-κB signaling pathways. FASEB J 32, 1044–1058.

    Article  CAS  PubMed  Google Scholar 

  • Saygin, C., Wiechert, A., Rao, V.S., Alluri, R., Connor, E., Thiagarajan, P. S., Hale, J.S., Li, Y., Chumakova, A., Jarrar, A., et al. (2017). Cd55 regulates self-renewal and cisplatin resistance in endometrioid tumors. J Exp Med 214, 2715–2732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serena, E., Figallo, E., Tandon, N., Cannizzaro, C., Gerecht, S., Elvassore, N., and Vunjak-Novakovic, G. (2009). Electrical stimulation of human embryonic stem cells: Cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res 315, 3611–3619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward, A.J., Kelly, D.J., and Wagner, D.R. (2014). The role of calcium signalling in the chondrogenic response of mesenchymal stem cells to hydrostatic pressure. Eur Cell Mater 28, 358–371.

    Article  CAS  PubMed  Google Scholar 

  • Tang, X., Fan, L., Pei, M., Zeng, L., and Ge, Z. (2015). Evolving concepts of chondrogenic differentiation: History, state-of-the-art and future perspectives. Eur Cell Mater 30, 12–27.

    Article  CAS  PubMed  Google Scholar 

  • Veronese, N., Cooper, C., Reginster, J.Y., Hochberg, M., Branco, J., Bruyère, O., Chapurlat, R., Al-Daghri, N., Dennison, E., Herrero-Beaumont, G., et al. (2019). Type 2 diabetes mellitus and osteoarthritis. Semin Arthritis Rheum 49, 9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Feng, Z., Wang, X., Wang, X., and Zhang, X. (2010). DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Lin, Q., Zhang, T., Wang, X., Cheng, K., Gao, M., Xia, P., and Li, X. (2019). Low-intensity pulsed ultrasound promotes chondrogenesis of mesenchymal stem cells via regulation of autophagy. Stem Cell Res Ther 10, 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagi, S., Sato, T., Kangawa, K., and Nakazato, M. (2018). The homeostatic force of ghrelin. Cell Metab 27, 786–804.

    Article  CAS  PubMed  Google Scholar 

  • Yao, C., Hu, X., Mi, Y., Li, C., and Sun, C. (2009). Window effect of pulsed electric field on biological cells. IEEE Trans Dielect Electr Insul 16, 1259–1266.

    Article  Google Scholar 

  • Zha, K., Sun, Z., Yang, Y., Chen, M., Gao, C., Fu, L., Li, H., Sui, X., Guo, Q., and Liu, S. (2021). Recent developed strategies for enhancing chondrogenic differentiation of MSC: Impact on MSC-based therapy for cartilage regeneration. Stem Cells Int 2021, 1–15.

    Article  CAS  Google Scholar 

  • Zhang, J., Mujeeb, A., Feng, J., Li, Y., Du, Y., Lin, J., and Ge, Z. (2016). Physically entrapped gelatin in polyethylene glycol scaffolds for three-dimensional chondrocyte culture. J Bioact Compat Polyms 31, 513–530.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFA0111900), and the National Natural Science Foundation of China (81772334). The authors would like to thank Mr. Kaile Wang for operating the nsPEFs equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangzi Jiang or Zigang Ge.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Fan, L., Lin, J. et al. Nanosecond pulsed electric fields prime mesenchymal stem cells to peptide ghrelin and enhance chondrogenesis and osteochondral defect repair in vivo. Sci. China Life Sci. 65, 927–939 (2022). https://doi.org/10.1007/s11427-021-1983-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1983-y

Keywords

Navigation