Skip to main content
Log in

HIV-1 viral cores enter the nucleus collectively through the nuclear endocytosis-like pathway

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

It is recognized that HIV-1 capsid cores are disassembled in the cytoplasm, releasing their genomes into the nucleus through nuclear pores, but there is also evidence showing the capsid (CA) exists in the nucleus. Whether HIV-1 enters the nucleus and how it enters the nucleus through the undersized nuclear pore remains mysterious. Based on multicolor labeling and real-time imaging of the viral and cellular components, our observations via light and electron microscopy suggest that HIV-1 selectively gathered at the microtubule organization center (MTOC), leading the nearby nuclear envelope (NE) to undergo deformation, invagination and restoration to form a nuclear vesicle in which the viral particles were wrapped; then, the inner membrane of the nuclear vesicle ruptured to release HIV-1 into the nucleus. This unexpected discovery expands our understanding of the complexity of HIV-1 nuclear entry, which may provide new insights to HIV-1 virology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achuthan, V., Perreira, J.M., Sowd, G.A., Puray-Chavez, M., McDougall, W.M., Paulucci-Holthauzen, A., Wu, X., Fadel, H.J., Poeschla, E.M., Multani, A.S., et al. 2018. Capsid-CPSF6 interaction licenses nuclear HIV-1 trafficking to sites of viral DNA integration. Cell Host Microbe, 24: 392–404.e8.

    Article  CAS  Google Scholar 

  • Arii, J., Watanabe, M., Maeda, F., Tokai-Nishizumi, N., Chihara, T., Miura, M., Maruzuru, Y., Koyanagi, N., Kato, A., and Kawaguchi, Y. (2018). ESCRT-III mediates budding across the inner nuclear membrane and regulates its integrity. Nat Commun 9, 3379.

    Article  Google Scholar 

  • Beaudouin, J., Gerlich, D., Daigle, N., Eils, R., and Ellenberg, J. 2002. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell, 108: 83–96.

    Article  CAS  Google Scholar 

  • Burdick, R.C., Li, C., Munshi, M.H., Rawson, J.M.O., Nagashima, K., Hu, W.S., and Pathak, V.K. 2020. HIV-1 uncoats in the nucleus near sites of integration. Proc Natl Acad Sci USA, 117: 5486–5493.

    Article  CAS  Google Scholar 

  • Campbell, E.M., and Hope, T.J. 2015. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat Rev Microbiol, 13: 471–483.

    Article  CAS  Google Scholar 

  • de Noronha, C.M.C., Sherman, M.P., Lin, H.W., Cavrois, M.V., Moir, R.D., Goldman, R.D., and Greene, W.C. 2001. Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science, 294: 1105–1108.

    Article  CAS  Google Scholar 

  • Dharan, A., and Campbell, E.M. 2018. Role of microtubules and microtubule-associated proteins in HIV-1 infection. J Virol, 92: e00085.

    Article  CAS  Google Scholar 

  • Du Toit, A. 2018. Maximizing delivery. Nat Rev Microbiol, 16: 582–583.

    PubMed  Google Scholar 

  • Elia, N., Sougrat, R., Spurlin, T.A., Hurley, J.H., and Lippincott-Schwartz, J. 2011. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci USA, 108: 4846–4851.

    Article  CAS  Google Scholar 

  • Francis, A.C., and Melikyan, G.B. 2018. Single HIV-1 imaging reveals progression of infection through CA-dependent steps of docking at the nuclear pore, uncoating, and nuclear transport. Cell Host Microbe, 23: 536–548.e6.

    Article  CAS  Google Scholar 

  • Ganser-Pornillos, B.K., Cheng, A., and Yeager, M. 2007. Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell, 131: 70–79.

    Article  CAS  Google Scholar 

  • Harding, S.M., Benci, J.L., Irianto, J., Discher, D.E., Minn, A.J., and Greenberg, R.A. 2017. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature, 548: 466–470.

    Article  CAS  Google Scholar 

  • Hatch, E.M. 2018. Nuclear envelope rupture: little holes, big openings. Curr Opin Cell Biol, 52: 66–72.

    Article  CAS  Google Scholar 

  • Hatch, E.M., Fischer, A.H., Deerinck, T.J., and Hetzer, M.W. 2013. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell, 154: 47–60.

    Article  CAS  Google Scholar 

  • Johnson, D.S., Bleck, M., and Simon, S.M. 2018. Timing of ESCRT-III protein recruitment and membrane scission during HIV-1 assembly. eLife, 7: e36221.

    Article  Google Scholar 

  • Lahaye, X., Gentili, M., Silvin, A., Conrad, C., Picard, L., Jouve, M., Zueva, E., Maurin, M., Nadalin, F., Knott, G.J., et al. 2018. NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation. Cell, 175: 488–501.e22.

    Article  CAS  Google Scholar 

  • Leeks, A., Sanjuán, R., and West, S.A. 2019. The evolution of collective infectious units in viruses. Virus Res, 265: 94–101.

    Article  CAS  Google Scholar 

  • Lowe, A.R., Siegel, J.J., Kalab, P., Siu, M., Weis, K., and Liphardt, J.T. 2010. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature, 467: 600–603.

    Article  CAS  Google Scholar 

  • Ma, Y., He, Z., Tan, T., Li, W., Zhang, Z., Song, S., Zhang, X., Hu, Q., Zhou, P., Wu, Y., et al. 2016. Real-time imaging of single HIV-1 disassembly with multicolor viral particles. ACS Nano, 10: 6273–6282.

    Article  CAS  Google Scholar 

  • MacKenzie, K.J., Carroll, P., Martin, C.A., Murina, O., Fluteau, A., Simpson, D.J., Olova, N., Sutcliffe, H., Rainger, J.K., Leitch, A., et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature, 548: 461–465.

    Article  CAS  Google Scholar 

  • McDonald, D., Vodicka, M.A., Lucero, G., Svitkina, T.M., Borisy, G.G., Emerman, M., and Hope, T.J. 2002. Visualization of the intracellular behavior of HIV in living cells. J Cell Biol, 159: 441–452.

    Article  CAS  Google Scholar 

  • Morita, E., Sandrin, V., McCullough, J., Katsuyama, A., Baci Hamilton, I., and Sundquist, W.I. 2011. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe, 9: 235–242.

    Article  CAS  Google Scholar 

  • Ohkawa, T., and Welch, M.D. 2018. Baculovirus actin-based motility drives nuclear envelope disruption and nuclear egress. Curr Biol, 28: 2153–2159.e4.

    Article  CAS  Google Scholar 

  • Panté, N., and Kann, M. 2002. Nuclear pore complex is able to transport macromolecules with diameters of ∼39 nm. Mol Biol Cell, 13: 425–434.

    Article  Google Scholar 

  • Peng, K., Muranyi, W., Glass, B., Laketa, V., Yant, S.R., Tsai, L., Cihlar, T., Müller, B., and Kräusslich, H.G. 2014. Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid. eLife, 3: e04114.

    Article  Google Scholar 

  • Raab, M., Gentili, M., de Belly, H., Thiam, H.R., Vargas, P., Jimenez, A.J., Lautenschlaeger, F., Voituriez, R., Lennon-Duménil, A.M., Manel, N., et al. 2016. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science, 352: 359–362.

    Article  CAS  Google Scholar 

  • Salina, D., Bodoor, K., Eckley, D.M., Schroer, T.A., Rattner, J.B., and Burke, B. 2002. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell, 108: 97–107.

    Article  CAS  Google Scholar 

  • Santiana, M., Ghosh, S., Ho, B.A., Rajasekaran, V., Du, W.L., Mutsafi, Y., De Jésus-Diaz, D.A., Sosnovtsev, S.V., Levenson, E.A., Parra, G.I., et al. 2018. Vesicle-cloaked virus clusters are optimal units for interorganismal viral transmission. Cell Host Microbe, 24: 208–220.e8.

    Article  CAS  Google Scholar 

  • Segura-Totten, M., and Wilson, K.L. 2001. Virology. HIV—breaking the rules for nuclear entry. Science, 294: 1016–1017.

    Article  CAS  Google Scholar 

  • Shah, P., Wolf, K., and Lammerding, J. (2017). Bursting the bubble—nuclear envelope rupture as a path to genomic instability? Trends Cell Biol 27, 546–555.

    Article  CAS  Google Scholar 

  • Sowd, G.A., Serrao, E., Wang, H., Wang, W., Fadel, H.J., Poeschla, E.M., and Engelman, A.N. 2016. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc Natl Acad Sci USA, 113: E1054–E1063.

    Article  CAS  Google Scholar 

  • Speese, S.D., Ashley, J., Jokhi, V., Nunnari, J., Barria, R., Li, Y., Ataman, B., Koon, A., Chang, Y.T., Li, Q., et al. 2012. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell, 149: 832–846.

    Article  CAS  Google Scholar 

  • Turan, A., Grosche, L., Krawczyk, A., Mühl-Zürbes, P., Drassner, C., Düthorn, A., Kummer, M., Hasenberg, M., Voortmann, S., Jastrow, H., et al. 2019. Autophagic degradation of lamins facilitates the nuclear egress of herpes simplex virus type 1. J Cell Biol, 218: 508–523.

    Article  CAS  Google Scholar 

  • Turgay, Y., Champion, L., Balazs, C., Held, M., Toso, A., Gerlich, D.W., Meraldi, P., and Kutay, U. 2014. SUN proteins facilitate the removal of membranes from chromatin during nuclear envelope breakdown. J Cell Biol, 204: 1099–1109.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Center for Biological Imaging (CBI), IBP-CAS, particularly Shuoguo Li, Yun Feng and Can Peng, for technical support with the SIM and TEM work. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB29050100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yikai Zhou or Xian-En Zhang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supporting information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, D., Cui, Z. et al. HIV-1 viral cores enter the nucleus collectively through the nuclear endocytosis-like pathway. Sci. China Life Sci. 64, 66–76 (2021). https://doi.org/10.1007/s11427-020-1716-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1716-x

Keywords

Navigation