Skip to main content
Log in

Identification of mecciRNAs and their roles in the mitochondrial entry of proteins

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Mammalian mitochondria have small genomes encoding very limited numbers of proteins. Over one thousand proteins and noncoding RNAs encoded by the nuclear genome must be imported from the cytosol into the mitochondria. Here, we report the identification of hundreds of circular RNAs (mecciRNAs) encoded by the mitochondrial genome. We provide both in vitro and in vivo evidence to show that mecciRNAs facilitate the mitochondrial entry of nuclear-encoded proteins by serving as molecular chaperones in the folding of imported proteins. Known components involved in mitochondrial protein and RNA importation, such as TOM40 and PNPASE, interact with mecciRNAs and regulate protein entry. The expression of mecciRNAs is regulated, and these transcripts are critical for the adaption of mitochondria to physiological conditions and diseases such as stresses and cancers by modulating mitochondrial protein importation. mecciRNAs and their associated physiological roles add categories and functions to the known eukaryotic circular RNAs and shed novel light on the communication between mitochondria and the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All RNA-seq and DNA resequencing data are deposited in the NCBI with the accession number.

References

  • Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H.L., Coulson, A. R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465.

    CAS  PubMed  Google Scholar 

  • Antonicka, H., and Shoubridge, E.A. (2015). Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Rep, 10, 920–932.

    CAS  PubMed  Google Scholar 

  • Asin-Cayuela, J., and Gustafsson, C.M. (2007). Mitochondrial transcription and its regulation in mammalian cells. Trends Biochem Sci, 32, 111–117.

    CAS  PubMed  Google Scholar 

  • Aviram, N., and Schuldiner, M. (2017). Targeting and translocation of proteins to the endoplasmic reticulum at a glance. J Cell Sci, 130, 4079–4085.

    CAS  PubMed  Google Scholar 

  • Bao, X., Guo, X., Yin, M., Tariq, M., Lai, Y., Kanwal, S., Zhou, J., Li, N., Lv, Y., Pulido-Quetglas, C., et al. (2018). Capturing the interactome of newly transcribed RNA. Nat Methods, 15, 213–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boos, F., Krämer, L., Groh, C., Jung, F., Haberkant, P., Stein, F., Wollweber, F., Gackstatter, A., Zöller, E., van der Laan, M., et al. (2019). Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nat Cell Biol, 21, 442–451.

    CAS  PubMed  Google Scholar 

  • Brill, S.J., and Stillman, B. (1989). Yeast replication factor-A functions in the unwinding of the SV40 origin of DNA replication. Nature, 342, 92–95.

    CAS  PubMed  Google Scholar 

  • Calvo, S.E., Clauser, K.R., and Mootha, V.K. (2015). MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44, D1251–D1257.

    PubMed  PubMed Central  Google Scholar 

  • Capel, B., Swain, A., Nicolis, S., Hacker, A., Walter, M., Koopman, P., Goodfellow, P., and Lovell-Badge, R. (1993). Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell, 73, 1019–1030.

    CAS  PubMed  Google Scholar 

  • Chen, L.L. (2016). The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol, 17, 205–211.

    CAS  PubMed  Google Scholar 

  • Chen, L., Huang, C., Wang, X., and Shan, G. (2015). Circular RNAs in eukaryotic cells. CG, 16, 312–318.

    CAS  Google Scholar 

  • Cheng, Y., Liu, P., Zheng, Q., Gao, G., Yuan, J., Wang, P., Huang, J., Xie, L., Lu, X., Tong, T., et al. (2018). Mitochondrial trafficking and processing of telomerase RNA TERC. Cell Rep, 24, 2589–2595.

    CAS  PubMed  Google Scholar 

  • Costa, E.A., Subramanian, K., Nunnari, J., and Weissman, J.S. (2018). Defining the physiological role of SRP in protein-targeting efficiency and specificity. Science, 359, 689–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danan, M., Schwartz, S., Edelheit, S., and Sorek, R. (2011). Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res, 40, 3131–3142.

    PubMed  PubMed Central  Google Scholar 

  • Deshaies, R.J., Koch, B.D., Werner-Washburne, M., Craig, E.A., and Schekman, R. (1988). A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature, 332, 800–805.

    CAS  PubMed  Google Scholar 

  • Dhir, A., Dhir, S., Borowski, L.S., Jimenez, L., Teitell, M., Rötig, A., Crow, Y.J., Rice, G.I., Duffy, D., Tamby, C., et al. (2018). Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature, 560, 238–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspari, M., Larsson, N.G., and Gustafsson, C.M. (2004). The transcription machinery in mammalian mitochondria. Biochim Biophys Acta Bioenerg, 1659, 148–152.

    CAS  Google Scholar 

  • Geuens, T., Bouhy, D., and Timmerman, V. (2016). The hnRNP family: insights into their role in health and disease. Hum Genet, 135, 851–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glažar, P., Papavasileiou, P., and Rajewsky, N. (2014). circBase: a database for circular RNAs. RNA, 20, 1666–1670.

    PubMed  PubMed Central  Google Scholar 

  • Gray, M.W., Burger, G., and Lang, B.F. (1999). Mitochondrial evolution. Science, 283, 1476–1481.

    CAS  PubMed  Google Scholar 

  • Gray, M.W., Burger, G., and Lang, B.F. (2001). The origin and early evolution of mitochondria.. Genome Biol 2, reviews1018.1.

    Google Scholar 

  • Gustafsson, C.M., Falkenberg, M., and Larsson, N.G. (2016). Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem, 85, 133–160.

    CAS  PubMed  Google Scholar 

  • Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., and Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495, 384–388.

    CAS  PubMed  Google Scholar 

  • Harbauer, A.B., Zahedi, R.P., Sickmann, A., Pfanner, N., and Meisinger, C. (2014). The protein import machinery of mitochondria—a regulatory hub in metabolism, stress, and disease. Cell Metab, 19, 357–372.

    CAS  PubMed  Google Scholar 

  • Herai, R.H., Negraes, P.D., and Muotri, A.R. (2017). Evidence of nuclei-encoded spliceosome mediating splicing of mitochondrial RNA. Hum Mol Genet, 26, 2472–2479.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herst, P.M., Rowe, M.R., Carson, G.M., and Berridge, M.V. (2017). Functional mitochondria in health and disease. Front Endocrinol 8, 296.

    Google Scholar 

  • Hu, S., Wang, X., and Shan, G. (2016). Insertion of an Alu element in a lncRNA leads to primate-specific modulation of alternative splicing. Nat Struct Mol Biol, 23, 1011–1019.

    CAS  PubMed  Google Scholar 

  • Kim, C., Snyder, R.O., and Wold, M.S. (1992). Binding properties of replication protein A from human and yeast cells.. Mol Cell Biol, 12, 3050–3059.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen, L.S., Andersen, M.S., Stagsted, L.V.W., Ebbesen, K.K., Hansen, T.B., and Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet, 20, 675–691.

    CAS  PubMed  Google Scholar 

  • Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., Zhong, G., Yu, B., Hu, W., Dai, L., et al. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 22, 256–264.

    PubMed  Google Scholar 

  • Liu, H., Wang, X., Wang, H.D., Wu, J.J., Ren, J., Meng, L., Wu, Q., Dong, H., Wu, J., Kao, T.Y., et al. (2012). Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans. Nat Commun 3, 1073.

    PubMed  Google Scholar 

  • Lopez Sanchez, M.I.G., Mercer, T.R., Davies, S.M.K., Shearwood, A.M.J., Nygård, K.K.A., Richman, T.R., Mattick, J.S., Rackham, O., and Filipovska, A. (2011). RNA processing in human mitochondria. Cell Cycle, 10, 2904–2916.

    Google Scholar 

  • Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S.D., Gregersen, L.H., Munschauer, M., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495, 333–338.

    CAS  PubMed  Google Scholar 

  • Mercer, T.R., Neph, S., Dinger, M.E., Crawford, J., Smith, M.A., Shearwood, A.M.J., Haugen, E., Bracken, C.P., Rackham, O., Stamatoyannopoulos, J.A., et al. (2011). The human mitochondrial transcriptome. Cell, 146, 645–658.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, S., Järvelin, A.I., Davis, I., Bond, G.L., and Castello, A. (2018). Expanding horizons: new roles for non-canonical RNA-binding proteins in cancer. Curr Opin Genets Dev, 48, 112–120.

    CAS  Google Scholar 

  • Moye-Rowley, W.S. (2003). Transcriptional control of multidrug resistance in the yeast Saccharomyces. Prog Nucleic Acid Res Mol Biol 73, 251–279.

    CAS  PubMed  Google Scholar 

  • Patop, I.L., Wüst, S., and Kadener, S. (2019). Past, present, and future of circRNA s. EMBO J 38, e100836.

    Google Scholar 

  • Quirós, P.M., Langer, T., and López-Otín, C. (2015). New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol, 16, 345–359.

    PubMed  Google Scholar 

  • Salzman, J., Gawad, C., Wang, P.L., Lacayo, N., and Brown, P.O. (2012). Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733.

    Google Scholar 

  • Scheibye-Knudsen, M., Fang, E.F., Croteau, D.L., Wilson III, D.M., and Bohr, V.A. (2015). Protecting the mitochondrial powerhouse. Trends Cell Biol, 25, 158–170.

    CAS  PubMed  Google Scholar 

  • Schmidt, O., Pfanner, N., and Meisinger, C. (2010). Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol, 11, 655–667.

    CAS  PubMed  Google Scholar 

  • Shan, G. (2010). RNA interference as a gene knockdown technique. Int J Biochem Cell Biol, 42, 1243–1251.

    CAS  PubMed  Google Scholar 

  • Sheng, Z., Wang, X., Xu, G., Shan, G., and Chen, L. (2019). Analyses of a panel of transcripts identified from a small sample size and construction of RNA networks in hepatocellular carcinoma. Front Genet 10.

    Google Scholar 

  • Shimada, E., Ahsan, F.M., Nili, M., Huang, D., Atamdede, S., TeSlaa, T., Case, D., Yu, X., Gregory, B.D., Perrin, B.J., et al. (2018). PNPase knockout results in mtDNA loss and an altered metabolic gene expression program. PLoS ONE 13, e0200925.

    Google Scholar 

  • Smirnov, A., Comte, C., Mager-Heckel, A.M., Addis, V., Krasheninnikov, I.A., Martin, R.P., Entelis, N., and Tarassov, I. (2010). Mitochondrial enzyme rhodanese is essential for 5 S ribosomal RNA import into human mitochondria. J Biol Chem, 285, 30792–30803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, A.C., and Robinson, A.J. (2015). MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res 44, D1258–D1261.

    PubMed  PubMed Central  Google Scholar 

  • Sokol, A.M., Sztolsztener, M.E., Wasilewski, M., Heinz, E., and Chacinska, A. (2014). Mitochondrial protein translocases for survival and wellbeing. FEBS Lett, 588, 2484–2495.

    CAS  PubMed  Google Scholar 

  • Sun, L., Fazal, F.M., Li, P., Broughton, J.P., Lee, B., Tang, L., Huang, W., Kool, E.T., Chang, H.Y., and Zhang, Q.C. (2019). RNA structure maps across mammalian cellular compartments. Nat Struct Mol Biol, 26, 322–330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo, L., and Salzman, J. (2016). Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet, 17, 679–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Topf, U., Wrobel, L., and Chacinska, A. (2016). Chatty mitochondria: keeping balance in cellular protein homeostasis. Trends Cell Biol, 26, 577–586.

    CAS  PubMed  Google Scholar 

  • Van Houten, B., Woshner, V., and Santos, J.H. (2006). Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair, 5, 145–152.

    PubMed  Google Scholar 

  • Venegas, V., and Halberg, M.C. (2012). Measurement of mitochondrial DNA copy number. In Mitochondrial Disorders (Springer), pp. 327–335.

    Google Scholar 

  • Vyas, S., Zaganjor, E., and Haigis, M.C. (2016). Mitochondria and cancer. Cell, 166, 555–566.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walter, P., and Blobel, G. (1982). Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature, 299, 691–698.

    CAS  PubMed  Google Scholar 

  • Wang, G., Chen, H.W., Oktay, Y., Zhang, J., Allen, E.L., Smith, G.M., Fan, K.C., Hong, J.S., French, S.W., McCaffery, J.M., et al. (2010). PNPASE regulates RNA import into mitochondria. Cell, 142, 456–467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., and Shan, G. (2018). Nonradioactive Northern blot of circRNAs. In Circular RNAs (Springer), pp. 135–141.

    Google Scholar 

  • Weidberg, H., and Amon, A. (2018). MitoCPR—A surveillance pathway that protects mitochondria in response to protein import stress. Science 360, eaan4146.

    Google Scholar 

  • Weir, H.J., Yao, P., Huynh, F.K., Escoubas, C.C., Goncalves, R.L., Burkewitz, K., Laboy, R., Hirschey, M.D., and Mair, W.B. (2017). Dietary restriction and AMPK increase lifespan via mitochondrial network and peroxisome remodeling. Cell Metab, 26, 884–896.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wesselhoeft, R.A., Kowalski, P.S., and Anderson, D.G. (2018). Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9, 2629.

    PubMed  PubMed Central  Google Scholar 

  • Wieckowski, M.R., Giorgi, C., Lebiedzinska, M., Duszynski, J., and Pinton, P. (2009). Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc, 4, 1582–1590.

    CAS  PubMed  Google Scholar 

  • Wiedemann, N., and Pfanner, N. (2017). Mitochondrial machineries for protein import and assembly. Annu Rev Biochem, 86, 685–714.

    CAS  PubMed  Google Scholar 

  • Williamson, C.D., Wong, D.S., Bozidis, P., Zhang, A., and Colberg-Poley, A.M. (2015). Isolation of endoplasmic reticulum, mitochondria, and mitochondria-associated membrane and detergent resistant membrane fractions from transfected cells and from human cytomegalovirus-infected primary fibroblasts. Curr Protocols Cell Biol, 68, 3–27.

    Google Scholar 

  • Wrobel, L., Topf, U., Bragoszewski, P., Wiese, S., Sztolsztener, M.E., Oeljeklaus, S., Varabyova, A., Lirski, M., Chroscicki, P., Mroczek, S., et al. (2015). Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature, 524, 485–488.

    CAS  PubMed  Google Scholar 

  • Young, J.C., Hoogenraad, N.J., and Hartl, F.U. (2003). Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell, 112, 41–50.

    CAS  PubMed  Google Scholar 

  • Zhang, X., Zuo, X., Yang, B., Li, Z., Xue, Y., Zhou, Y., Huang, J., Zhao, X., Zhou, J., Yan, Y., et al. (2014). MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell, 158, 607–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zong, W.X., Rabinowitz, J.D., and White, E. (2016). Mitochondria and cancer. Mol Cell, 61, 667–676.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, Y., Liu, Y., Wu, X., and Shell, S.M. (2006). Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol, 208, 267–273.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Lei Liu for technical support of C. elegans experiments. This work was supported by grants to G. S.: the National Key R&D Program of China (2019YFA0802600 and 2018YFC1004500), the National Natural Science Foundation of China (31725016, 31930019, and 91940303), and the Strategic Priority Research Program (Pilot Study) “Biological basis of aging and therapeutic strategies” of the Chinese Academy of Sciences (XDPB10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Shan.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, X., Li, J. et al. Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. Sci. China Life Sci. 63, 1429–1449 (2020). https://doi.org/10.1007/s11427-020-1631-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1631-9

Key words

Navigation