Skip to main content
Log in

Metabolic disorder in the progression of heart failure

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a major clinical concern owing to its high prevalence and high mortality. Metabolomics, an effective approach to predict diagnostic biomarkers and to explore the altered metabolic pathways in pathogenesis, has been extensively applied in evaluating the course of diseases. In this study, we used this approach to analyse the abundance of metabolites, with liquid chromatograph-mass spectrometer, in plasma samples from rats with transverse aortic constriction (TAC) and patients at different stages of HF. We compared the metabolic parameters within and between TAC rats and patients. An apparent metabolic shift was observed in rats, from compensated hypertrophy stage to decompensated hypertrophy stage, and in patients with HF, from stage A to stage B and subsequently stage C. Diagnostic biomarkers were predicted by comparing the variable importance in the projection scores and fold change analysis within and between rats and patients. Enrichment pathway analysis and network analysis provided an overview of the largely disturbed metabolic pathways, and those interfered at different stages and across species were confirmed. The significantly changed metabolites and pathways revealed the underlying mechanisms of HF pathogenesis, hinted at novel potential biomarkers, and provided potential therapeutic intervention targets for HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, C.L., and Tang, W.H.W. (2018). Metabolic biomarkers in heart failure. Heart Fail Clin 14, 109–118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ardehali, H., Sabbah, H.N., Burke, M.A., Sarma, S., Liu, P.P., Cleland, J.G. F., Maggioni, A., Fonarow, G.C., Abel, E.D., Campia, U., et al. (2012). Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur J Heart Fail 14, 120–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin, E.J., Virani, S.S., Callaway, C.W., Chamberlain, A.M., Chang, A.R., Cheng, S., Chiuve, S.E., Cushman, M., Delling, F.N., Deo, R., et al. (2018). Heart Disease and Stroke Statistics—2018 Update: A report from the American Heart Association. Circulation 137, e67.

    Article  PubMed  Google Scholar 

  • Berger, R., Moertl, D., Peter, S., Ahmadi, R., Huelsmann, M., Yamuti, S., Wagner, B., and Pacher, R. (2010). N-terminal pro-B-type natriuretic peptide-guided, intensive patient management in addition to multidisciplinary care in chronic heart failure. J Am Coll Cardiol 55, 645–653.

    Article  CAS  PubMed  Google Scholar 

  • Bienholz, A., Reis, J., Sanli, P., de Groot, H., Petrat, F., Guberina, H., Wilde, B., Witzke, O., Saner, F.H., Kribben, A., et al. (2017). Citrate shows protective effects on cardiovascular and renal function in ischemia-induced acute kidney injury. BMC Nephrol 18, 130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, M.L., Wang, C.H., Shiao, M.S., Liu, M.H., Huang, Y.Y., Huang, C. Y., Mao, C.T., Lin, J.F., Ho, H.Y., and Yang, N.I. (2015). Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure. J Am Coll Cardiol 65, 1509–1520.

    Article  CAS  PubMed  Google Scholar 

  • Cui, X., Ye, L., Li, J., Jin, L., Wang, W., Li, S., Bao, M., Wu, S., Li, L., Geng, B., et al. (2018). Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 8, 635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doehner, W., Frenneaux, M., and Anker, S.D. (2014). Metabolic impairment in heart failure. J Am Coll Cardiol 64, 1388–1400.

    Article  PubMed  Google Scholar 

  • Dunn, W.B., Broadhurst, D.I., Deepak, S.M., Buch, M.H., McDowell, G., Spasic, I., Ellis, D.I., Brooks, N., Kell, D.B., and Neyses, L. (2007). Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate. Metabolomics 3, 413–426.

    Article  CAS  Google Scholar 

  • Feng, Y., Zhang, Y., and Xiao, H. (2018). AMPK and cardiac remodelling. Sci China Life Sci 61, 14–23.

    Article  CAS  PubMed  Google Scholar 

  • Gao, J., Zhu, M., Liu, R.F., Zhang, J.S., and Xu, M. (2018). Cardiac hypertrophy is positively regulated by microRNA-24 in rats. Chin Med J 131, 1333–1341.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garland, P.B., Randle, P.J., and Newsholme, E.A. (1963). Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation. Nature 200, 169–170.

    Article  CAS  PubMed  Google Scholar 

  • Hassel, B., Ilebekk, A., and Tønnessen, T. (1998). Cardiac accumulation of citrate during brief myocardial ischaemia and reperfusion in the pig in vivo. Acta Physiol Scand 164, 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, S.A., Abraham, W.T., Chin, M.H., Feldman, A.M., Francis, G.S., Ganiats, T.G., Jessup, M., Konstam, M.A., Mancini, D.M., Michl, K., et al. (2009). 2009 focused update incorporated into the acc/aha 2005 guidelines for the diagnosis and management of heart failure in adults. Circulation 119.

  • Kamo, T., Akazawa, H., Suzuki, J.I., and Komuro, I. (2017). Novel concept ofa heart-gut axis in the pathophysiology ofheart failure. Kor Circ J 47, 663–669.

    Article  Google Scholar 

  • Kidher, E., Harling, L., Ashrafian, H., Naase, H., Francis, D.P., Evans, P., and Athanasiou, T. (2014). Aortic stiffness as a marker of cardiac function and myocardial strain in patients undergoing aortic valve replacement. J Cardiothorac Surg 9, 102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitzman, D.W., Upadhya, B., and Vasu, S. (2015). What the dead can teach the living. Circulation 131, 522–524.

    Article  PubMed  Google Scholar 

  • Lanfear, D.E., Gibbs, J.J., Li, J., She, R., Petucci, C., Culver, J.A., Tang, W.H.W., Pinto, Y.M., Williams, L.K., Sabbah, H.N., et al. (2017). Targeted metabolomic profiling of plasma and survival in heart failure patients. JACC Heart Fail 5, 823–832.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, Y., Zhu, X., Li, J., Fang, R., Wang, Z., Zhang, J., Li, K., Li, X., Bai, H., Yang, Q., et al. (2017). Glycine prevents pressure overload induced cardiac hypertrophy mediated by glycine receptor. Biochem Pharmacol 123, 40–51.

    Article  CAS  PubMed  Google Scholar 

  • Maisel, A.S., Clopton, P., Krishnaswamy, P., Nowak, R.M., McCord, J., Hollander, J.E., Duc, P., Omland, T., Storrow, A.B., Abraham, W.T., et al. (2004). Impact of age, race, and sex on the ability of B-type natriuretic peptide to aid in the emergency diagnosis of heart failure: results from the Breathing Not Properly (BNP) multinational study. Am Heart J 147, 1078–1084.

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Hennessen, M., Sigl, J., Fuhrmann, J.C., Witt, H., Reszka, R., Schmitz, O., Kastler, J., Fischer, J.J., Müller, O.J., Giannitsis, E., et al. (2017). Metabolic profiles in heart failure due to non-ischemic cardiomyopathy at rest and under exercise. ESC Heart Fail 4, 178–189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pietersen, H.G., Langenberg, C.J.M., Geskes, G., Soeters, P.B., and Wagenmakers, A.J.M. (1998). Glutamate metabolism of the heart during coronary artery bypass grafting. Clin Nutrit 17, 73–75.

    Article  CAS  Google Scholar 

  • Pisarenko, O., Studneva, I., Khlopkov, V., Solomatina, E., and Ruuge, E. (1988). An assessment of anaerobic metabolism during ischemia and reperfusion in isolated guinea pig heart. Biochim Biophys Acta Bioenerg 934, 55–63.

    Article  CAS  Google Scholar 

  • Schneider, A., Markowski, A., Momma, M., Seipt, C., Luettig, B., Hadem, J., Wilhelmi, M., Manns, M.P., and Wedemeyer, J. (2011). Tolerability and efficacy of a low-volume enteral supplement containing key nutrients in the critically ill. Clrin Nutrit 30, 599–603.

    CAS  Google Scholar 

  • Senthong, V., Li, X.S., Hudec, T., Coughlin, J., Wu, Y., Levison, B., Wang, Z., Hazen, S.L., and Tang, W.H.W. (2016). Plasma trimethylamine N-oxide, a gut microbe-generated phosphatidylcholine metabolite, is associated with atherosclerotic burden. J Am Coll Cardiol 67, 2620–2628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao, M., Huang, C., Li, Z., Yang, H., and Feng, Q. (2014). Effects of glutamine and valsartan on the brain natriuretic peptide and n-terminal pro-b-type natriuretic peptide of patients with chronic heart failure. Pak J Med Sci 31.

  • Tang, W.H.W., Wang, Z., Shrestha, K., Borowski, A.G., Wu, Y., Troughton, R.W., Klein, A.L., and Hazen, S.L. (2015). Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Cardiac Fail 21, 91–96.

    Article  CAS  Google Scholar 

  • Tang, W.W., and Hazen, S.L. (2016). Dietary metabolism, gut microbiota and acute heart failure. Heart 102, 813–814.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C.H., Cheng, M.L., and Liu, M.H. (2018). Simplified plasma essential amino acid-based profiling provides metabolic information and prognostic value additive to traditional risk factors in heart failure. Amino Acids 50, 1739–1748.

    Article  CAS  PubMed  Google Scholar 

  • Warnecke, G., Schulze, B., Steinkamp, T., Haverich, A., and Klima, U. (2006). Glycine application and right heart function in a porcine heart transplantation model. Transplant Int 19, 218–224.

    Article  CAS  Google Scholar 

  • Watson, H. (2015). Biological membranes. Essays Biochem 59, 43–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, M., Zhou, P., Xu, S.M., Liu, Y., Feng, X., Bai, S.H., Bai, Y., Hao, X.M., Han, Q., Zhang, Y., et al. (2007). Intermolecular failure of 1-type Ca2+ channel and ryanodine receptor signaling in hypertrophy. PLoS Biol 5, e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, A.Q., Mitchell, S.C., and Smith, R.L. (1999). Dietary precursors of trimethylamine in man: a pilot study. Food Chem Toxicol 37, 515–520.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, K., and Hong, T. (2017). Cardiac BIN1 (cBIN1) is a regulator of cardiac contractile function and an emerging biomarker of heart muscle health. Sci China Life Sci 60, 257–263.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81625001, 81700010) and National Key Research & Development Program of China (2018YFC1312700, 2018YFC1312701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changtao Jiang or Ming Xu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, H., Gao, J. et al. Metabolic disorder in the progression of heart failure. Sci. China Life Sci. 62, 1153–1167 (2019). https://doi.org/10.1007/s11427-019-9548-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-9548-9

Keywords

Navigation