Skip to main content
Log in

Room-temperature ferrimagnetism and size-modulated electronic structures in two-dimensional cluster-based metal-organic frameworks

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cluster-assembled materials have attracted particular attention for their complex hierarchical structures and unique properties. However, the majority of cluster-based assemblies developed so far are either non-magnetic or only exhibit magnetic ordering with a relatively low Curie temperature, limiting their applications in spintronics. Thus, two-dimensional (2D) cluster-assembled materials with room-temperature magnetism remain highly desirable. For this purpose, based on first principles calculations, we design a series of thermodynamically stable 2D cluster-based metal-organic frameworks (MOFs) Fen-(pyz) (n=1–6) by utilizing Fen metal clusters as nodes and nitrogen-containing pyrazine ligands as organic linkers. These 2D cluster-based MOFs exhibit robust ferrimagnetic ordering due to the strong d–p direct exchange interaction between d-electron spin of Fen (n=1–6) clusters and charge transfer-induced p-electron spin of pyrazine ligands. In particular, the ferrimagnetic Curie temperatures are well above room temperature (up to 836 K). Additionally, altering the size of Fen clusters in Fen-(pyz) (n=1–6) MOFs results in diverse functional spintronic properties, including bipolar magnetic semiconductors, half semiconductors and Dirac half metals. Moreover, these 2D assembled MOFs possess sizable magnetic anisotropy energies, up to 9.16 meV per formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chakraborty G, Park IH, Medishetty R, Vittal JJ. Chem Rev, 2021, 121: 3751–3891

    Article  CAS  PubMed  Google Scholar 

  2. Yang L, He X, Dincă M. J Am Chem Soc, 2019, 141: 10475–10480

    Article  CAS  PubMed  Google Scholar 

  3. Wei X, Kang X, Zuo Z, Song F, Wang S, Zhu M. Natl Sci Rev, 2020, 8: nwaa077

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dong XY, Si Y, Yang JS, Zhang C, Han Z, Luo P, Wang ZY, Zang SQ, Mak TCW. Nat Commun, 2020, 11: 3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peng B. J Am Chem Soc, 2022, 144: 19921–19931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hou L, Cui X, Guan B, Wang S, Li R, Liu Y, Zhu D, Zheng J. Nature, 2022, 606: 507–510

    Article  CAS  PubMed  Google Scholar 

  7. Zhong X, Lee K, Choi B, Meggiolaro D, Liu F, Nuckolls C, Pasupathy A, De Angelis F, Batail P, Roy X, Zhu X. Nano Lett, 2018, 18: 1483–1488

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, Guo P, Zheng J, Zhao P, Jiang Z, Shen L. J Phys Chem C, 2020, 124: 6861–6870

    Article  CAS  Google Scholar 

  9. Cheng J, Feng Q, Li X, Yang J. J Phys Chem Lett, 2023, 14: 5048–5054

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Yang J. J Am Chem Soc, 2019, 141: 109–112

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Yang J. J Phys Chem Lett, 2019, 10: 2439–2444

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Liu QB, Tang Y, Li W, Ding N, Liu Z, Fu HH, Dong S, Li X, Yang J. J Am Chem Soc, 2023, 145: 7869–7878

    Article  CAS  PubMed  Google Scholar 

  13. Lv H, Li X, Wu D, Liu Y, Li X, Wu X, Yang J. Nano Lett, 2022, 22: 1573–1579

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Lv H, Liu X, Jin T, Wu X, Li X, Yang J. Sci China Chem, 2021, 64: 2212–2217

    Article  CAS  Google Scholar 

  15. Kresse G, Hafner J. Phys Rev B, 1993, 47: 558–561

    Article  CAS  Google Scholar 

  16. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  17. Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  18. Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  19. Grimme S, Ehrlich S, Goerigk L. J Comput Chem, 2011, 32: 1456–1465

    Article  CAS  PubMed  Google Scholar 

  20. Heyd J, Scuseria GE, Ernzerhof M. J Chem Phys, 2003, 118: 8207–8215

    Article  CAS  Google Scholar 

  21. Heyd J, Scuseria GE, Ernzerhof M. J Chem Phys, 2006, 124: 219906

    Article  Google Scholar 

  22. Liechtenstein AI, Anisimov VI, Zaanen J. Phys Rev B, 1995, 52: R5467–R5470

    Article  CAS  Google Scholar 

  23. Lou F, Li XY, Ji JY, Yu HY, Feng JS, Gong XG, Xiang HJ. J Chem Phys, 2021, 154: 114103

    Article  CAS  PubMed  Google Scholar 

  24. Togo A, Tanaka I. Scripta Mater, 2015, 108: 1–5

    Article  CAS  Google Scholar 

  25. Nehrkorn J, Greer SM, Malbrecht BJ, Anderton KJ, Aliabadi A, Krzystek J, Schnegg A, Holldack K, Herrmann C, Betley TA, Stoll S, Hill S. Inorg Chem, 2021, 60: 4610–4622

    Article  CAS  PubMed  Google Scholar 

  26. Sánchez RH, Betley TA. J Am Chem Soc, 2018, 140: 16792–16806

    Article  PubMed  Google Scholar 

  27. Sánchez RH, Betley TA. J Am Chem Soc, 2015, 137: 13949–13956

    Article  PubMed Central  Google Scholar 

  28. Bista D, Aydt AP, Anderton KJ, Paley DW, Betley TA, Reber AC, Chauhan V, Bartholomew AK, Roy X, Khanna SN. J Am Chem Soc, 2022, 144: 5172–5179

    Article  CAS  PubMed  Google Scholar 

  29. Diéguez O, Alemany MMG, Rey C, Ordejón P, Gallego LJ. Phys Rev B, 2001, 63: 205407

    Article  Google Scholar 

  30. Lu J, Chen G, Luo W, Íñiguez J, Bellaiche L, Xiang H. Phys Rev Lett, 2019, 122: 227601

    Article  CAS  PubMed  Google Scholar 

  31. Tang C, Zhang L, Sanvito S, Du A. J Am Chem Soc, 2023, 145: 2485–2491

    Article  CAS  PubMed  Google Scholar 

  32. Henkelman G, Arnaldsson A, Jónsson H. Comput Mater Sci, 2006, 36: 354–360

    Article  Google Scholar 

  33. Huang B, Clark G, Navarro-Moratalla E, Klein DR, Cheng R, Seyler KL, Zhong D, Schmidgall E, McGuire MA, Cobden DH, Yao W, Xiao D, Jarillo-Herrero P, Xu X. Nature, 2017, 546: 270–273

    Article  CAS  PubMed  Google Scholar 

  34. Garbouj H, El Hog S, Debbichi M, Said M. Phys Lett A, 2022, 448: 128326

    Article  CAS  Google Scholar 

  35. Gordon E, Mkhitaryan VV, Zhao H, Lee Y, Ke L. J Phys D-Appl Phys, 2021, 54: 464001

    Article  CAS  Google Scholar 

  36. Xiang HJ, Wei SH, Whangbo MH. Phys Rev Lett, 2008, 100: 167207

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Li X, Yang J. Fundamental Res, 2022, 2: 511–521

    Article  CAS  Google Scholar 

  38. Li X, Yang J. Chin J Chem, 2019, 37: 1021–1024

    Article  Google Scholar 

  39. Palmer RE, Pratontep S, Boyen HG. Nat Mater, 2003, 2: 443–448

    Article  CAS  PubMed  Google Scholar 

  40. Yoon B, Hakkinen H, Landman U, Worz AS, Antonietti JM, Abbet S, Judai K, Heiz U. Science, 2005, 307: 403–407

    Article  CAS  PubMed  Google Scholar 

  41. Li ZY, Young NP, Di Vece M, Palomba S, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J. Nature, 2008, 451: 46–48

    Article  CAS  PubMed  Google Scholar 

  42. Kaden WE, Kunkel WA, Kane MD, Roberts FS, Anderson SL. J Am Chem Soc, 2010, 132: 13097–13099

    Article  CAS  PubMed  Google Scholar 

  43. Kaden WE, Wu T, Kunkel WA, Anderson SL. Science, 2009, 326: 826–829

    Article  CAS  PubMed  Google Scholar 

  44. Ji S, Chen Y, Fu Q, Chen Y, Dong J, Chen W, Li Z, Wang Y, Gu L, He W, Chen C, Peng Q, Huang Y, Duan X, Wang D, Draxl C, Li Y. J Am Chem Soc, 2017, 139: 9795–9798

    Article  CAS  PubMed  Google Scholar 

  45. Tian S, Fu Q, Chen W, Feng Q, Chen Z, Zhang J, Cheong WC, Yu R, Gu L, Dong J, Luo J, Chen C, Peng Q, Draxl C, Wang D, Li Y. Nat Commun, 2018, 9: 2353

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ji S, Chen Y, Zhao S, Chen W, Shi L, Wang Y, Dong J, Li Z, Li F, Chen C, Peng Q, Li J, Wang D, Li Y. Angew Chem Int Ed, 2019, 58: 4271–4275

    Article  CAS  Google Scholar 

  47. Yan H, Lin Y, Wu H, Zhang W, Sun Z, Cheng H, Liu W, Wang C, Li J, Huang X, Yao T, Yang J, Wei S, Lu J. Nat Commun, 2017, 8: 1070

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lu J, Low KB, Lei Y, Libera JA, Nicholls A, Stair PC, Elam JW. Nat Commun, 2014, 5: 3264

    Article  PubMed  Google Scholar 

  49. Liu X, Gu Q, Zhang Y, Xu X, Wang H, Sun Z, Cao L, Sun Q, Xu L, Wang L, Li S, Wei S, Yang B, Lu J. J Am Chem Soc, 2023, 145: 6702–6709

    Article  CAS  PubMed  Google Scholar 

  50. Mattinen M, Leskelä M, Ritala M. Adv Mater Inter, 2021, 8: 2001677

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22288201, 22273092, 22322304), by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0450101), by the Youth Innovation Promotion Association CAS (2019441), by the Innovation Program for Quantum Science and Technology (2021ZD0303306), and by USTC Tang Scholar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingxing Li or Jinlong Yang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1936_MOESM1_ESM.pdf

Room Temperature Ferrimagnetism and Size Modulated Electronic Structures in Two-Dimensional Cluster-Based Metal Organic Frameworks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Li, X. & Yang, J. Room-temperature ferrimagnetism and size-modulated electronic structures in two-dimensional cluster-based metal-organic frameworks. Sci. China Chem. 67, 1334–1340 (2024). https://doi.org/10.1007/s11426-023-1936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1936-9

Navigation