Skip to main content
Log in

Nickel-modified In2O3 with inherent oxygen vacancies for CO2 hydrogenation to methanol

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Methanol synthesis is one of the most important industrially-viable approaches for carbon dioxide (CO2) utilization, as the produced methanol can be used as a platform chemical for manufacturing green fuels and chemicals. The In2O3 catalysts are ideal for sustainable methanol synthesis and have received considerable attention. Herein, Co-, Ni- and Cu-modified In2O3 catalysts were fabricated with high dispersion and high stability to improve the hydrogenation performance. The Ni-promoted In2O3 catalyst in the form of high dispersion possessed the largest amount of oxygen vacancies and the strongest ability for H2 activation, leading to the highest CO2 conversion and space time yield of methanol of 0.390 gMeOH gcat−1 h−1 with CH3OH selectivity of 68.7%. In addition, the catalyst exhibits very stable performance over 120 h on stream, which suggests the promising prospect for industrial applications. Further experimental and theoretical studies demonstrate that surface Ni doping promotes the formation of oxygen defects on the In2O3 catalyst, although it also results in lower methanol selectivity. Surprisingly, subsurface Ni dopants are found to be more beneficial for methanol formation than surface Ni dopants, so the Ni promoted In2O3 catalyst with a lower surface Ni content at the similar Ni loading can reach higher methanol selectivity and productivity. This work thus provides theoretical guidance for significantly improving the CO2 reactivity of In2O3-based catalysts while maintaining high methanol selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He M, Sun Y, Han B. Angew Chem Int Ed, 2013, 52: 9620–9633

    Article  CAS  Google Scholar 

  2. Jones WD. J Am Chem Soc, 2020, 142: 4955–4957

    Article  PubMed  CAS  Google Scholar 

  3. Tackett BM, Gomez E, Chen JG. Nat Catal, 2019, 2: 381–386

    Article  CAS  Google Scholar 

  4. Alvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F. Chem Rev, 2017, 117: 9804–9838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Amann P, Klötzer B, Degerman D, Köpfle N, Götsch T, Lömker P, Rameshan C, Ploner K, Bikaljevic D, Wang HY, Soldemo M, Shipilin M, Goodwin CM, Gladh J, Halldin Stenlid J, Börner M, Schlueter C, Nilsson A. Science, 2022, 376: 603–608

    Article  PubMed  CAS  Google Scholar 

  6. Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P. Science, 2017, 355: 1296–1299

    Article  PubMed  CAS  Google Scholar 

  7. Liang B, Ma J, Su X, Yang C, Duan H, Zhou H, Deng S, Li L, Huang Y. IndEng Chem Res, 2019, 58: 9030–9037

    Article  CAS  Google Scholar 

  8. Wu J, Saito M, Takeuchi M, Watanabe T. Appl Catal A-Gen, 2001, 218: 235–240

    Article  CAS  Google Scholar 

  9. Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T. Chem Soc Rev, 2020, 49: 1385–1413

    Article  PubMed  CAS  Google Scholar 

  10. Li K, Chen JG. ACS Catal, 2019, 9: 7840–7861

    Article  CAS  Google Scholar 

  11. Zhao H, Yu R, Ma S, Xu K, Chen Y, Jiang K, Fang Y, Zhu C, Liu X, Tang Y, Wu L, Wu Y, Jiang Q, He P, Liu Z, Tan L. Nat Catal, 2022, 5: 818–831

    Article  CAS  Google Scholar 

  12. Martin O, Martin AJ, Mondelli C, Mitchell S, Segawa TF, Hauert R, Drouilly C, Curulla-Ferré D, Pérez-Ramírez J. Angew Chem Int Ed, 2016, 55: 6261–6265

    Article  CAS  Google Scholar 

  13. Wang J, Zhang G, Zhu J, Zhang X, Ding F, Zhang A, Guo X, Song C. ACS Catal, 2021, 11: 1406–1423

    Article  CAS  Google Scholar 

  14. Gao Peng, Zhang Lina, Li Shenggang, Zhou Zixuan, Sun Yuhan. ACS Cent Sci, 2020, 6: 1657–1670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Frei MS, Mondelli C, Cesarini A, Krumeich F, Hauert R, Stewart JA, Curulla Ferré D, Pérez-Ramírez J. ACS Catal, 2019, 10: 1133–1145

    Article  Google Scholar 

  16. Chen T, Cao C, Chen T, Ding X, Huang H, Shen L, Cao X, Zhu M, Xu J, Gao J, Han YF. ACS Catal, 2019, 9: 8785–8797

    Article  CAS  Google Scholar 

  17. Frei MS, Mondelli C, Garcia-Muelas R, Kley KS, Puértolas B, López N, Safonova OV, Stewart JA, Curulla Ferré D, Pérez-Ramírez J. Nat Commun, 2019, 10: 3377

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rui N, Wang Z, Sun K, Ye J, Ge Q, Liu C. Appl Catal B-Environ, 2017, 218: 488–497

    Article  CAS  Google Scholar 

  19. Han Z, Tang C, Wang J, Li L, Li C. J Catal, 2021, 394: 236–244

    Article  CAS  Google Scholar 

  20. Sun K, Rui N, Zhang Z, Sun Z, Ge Q, Liu CJ. Green Chem, 2020, 22: 5059–5066

    Article  CAS  Google Scholar 

  21. Shen C, Sun K, Zhang Z, Rui N, Jia X, Mei D, Liu C. ACS Catal, 2021, 11: 4036–4046

    Article  CAS  Google Scholar 

  22. Wang J, Sun K, Jia X, Liu C. Catal Today, 2021, 365: 341–347

    Article  CAS  Google Scholar 

  23. Li MMJ, Zou H, Zheng J, Wu TS, Chan TS, Soo YL, Wu XP, Gong XQ, Chen T, Roy K, Held G, Tsang SCE. Angew Chem Int Ed, 2020, 59: 16039–16046

    Article  CAS  Google Scholar 

  24. Wu Q, Shen C, Rui N, Sun K, Liu C. J CO2 Utilization, 2021, 53: 101720

    Article  CAS  Google Scholar 

  25. Rui N, Wang X, Deng K, Moncada J, Rosales R, Zhang F, Xu W, Waluyo I, Hunt A, Stavitski E, Senanayake SD, Liu P, Rodriguez JA. ACS Catal, 2023, 13: 3187–3200

    Article  CAS  Google Scholar 

  26. Frei MS, Mondelli C, Garcia-Muelas R, Morales-Vidal J, Philipp M, Safonova OV, López N, Stewart JA, Ferré DC, Pérez-Ramírez J. Nat Commun, 2021, 12: 1960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Jia X, Sun K, Wang J, Shen C, Liu C. JEnergyChem, 2020, 50: 409–415

    Google Scholar 

  28. Cannizzaro F, Hensen EJM, Filot IAW. ACS Catal, 2023, 13: 1875–1892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bavykina A, Yarulina I, Al Abdulghani AJ, Gevers L, Hedhili MN, Miao X, Galilea AR, Pustovarenko A, Dikhtiarenko A, Cadiau A, Aguilar-Tapia A, Hazemann JL, Kozlov SM, Oud-Chikh S, Cavallo L, Gascon J. ACS Catal, 2019, 9: 6910–6918

    Article  CAS  Google Scholar 

  30. Sun K, Zhang Z, Shen C, Rui N, Liu C. Green Energy Environ, 2022, 7: 807–817

    Article  CAS  Google Scholar 

  31. Rui N, Sun K, Shen C, Liu CJ. J CO2 Utilization, 2020, 42: 101313

    Article  CAS  Google Scholar 

  32. Rui N, Zhang F, Sun K, Liu Z, Xu W, Stavitski E, Senanayake SD, Rodriguez JA, Liu CJ. ACS Catal, 2020, 10: 11307–11317

    Article  CAS  Google Scholar 

  33. Wang Y, Winter LR, Chen JG, Yan B. Green Chem, 2021, 23: 249–267

    Article  CAS  Google Scholar 

  34. Su X, Yang XF, Huang Y, Liu B, Zhang T. Acc Chem Res, 2019, 52: 656–664

    Article  PubMed  CAS  Google Scholar 

  35. Zhu J, Zhang G, Li W, Zhang X, Ding F, Song C, Guo X. ACS Catal, 2020, 10: 7424–7433

    Article  CAS  Google Scholar 

  36. Dostagir NHM, Rattanawan R, Gao M, Ota J, Hasegawa J, Asakura K, Fukouka A, Shrotri A. ACS Catal, 2021, 11: 9450–9461

    Article  CAS  Google Scholar 

  37. Wang A, Li J, Zhang T. Nat Rev Chem, 2018, 2: 65–81

    Article  CAS  Google Scholar 

  38. Wang J, Tang C, Li G, Han Z, Li Z, Liu H, Cheng F, Li C. ACS Catal, 2019, 9: 10253–10259

    Article  CAS  Google Scholar 

  39. Millet MM, Algara-Siller G, Wrabetz S, Mazheika A, Girgsdies F, Teschner D, Seitz F, Tarasov A, Levchenko SV, Schlögl R, Frei E. J Am Chem Soc, 2019, 141: 2451–2461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yang HB, Hung SF, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang HY, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen HM, Li CM, Zhang T, Liu B. Nat Energy, 2018, 3: 140–147

    Article  CAS  Google Scholar 

  41. Li Y, Wu ZS, Lu P, Wang X, Liu W, Liu Z, Ma J, Ren W, Jiang Z, Bao X. Adv Sci, 2020, 7: 1903089

    Article  CAS  Google Scholar 

  42. Zhu J, Cannizzaro F, Liu L, Zhang H, Kosinov N, Filot IAW, Rabeah J, Brückner A, Hensen EJM. ACS Catal, 2021, 11: 11371–11384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lee K, Mendes PCD, Jeon H, Song Y, Dickieson MP, Anjum U, Chen L, Yang TC, Yang CM, Choi M, Kozlov SM, Yan N. Nat Commun, 2023, 14: 819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chen S, Abdel-Mageed AM, Mochizuki C, Ishida T, Murayama T, Rabeah J, Parlinska-Wojtan M, Brückner A, Behm RJ. ACS Catal, 2021, 11: 9022–9033

    Article  CAS  Google Scholar 

  45. Zhou S, Zhao Y, Shi R, Wang Y, Ashok A, Héraly F, Zhang T, Yuan J. Adv Mater, 2022, 34: 2204388

    Article  CAS  Google Scholar 

  46. Shen C, Sun K, Zou R, Wu Q, Mei D, Liu C. ACS Catal, 2022, 12: 12658–12669

    Article  CAS  Google Scholar 

  47. Wei W, Wei Z, Li R, Li Z, Shi R, Ouyang S, Qi Y, Philips DL, Yuan H. Nat Commun, 2022, 13: 3199

    Article  PubMed  PubMed Central  Google Scholar 

  48. Medford AJ, Vojvodic A, Hummelshej JS, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nerskov JK. J Catal, 2015, 328: 36–42

    Article  CAS  Google Scholar 

  49. Dang S, Qin B, Yang Y, Wang H, Cai J, Han Y, Li S, Gao P, Sun Y. Sci Adv, 2020, 6: eaaz2060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Qin B, Zhou Z, Li S, Gao P. J CO2 Utilization, 2021, 49: 101543

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22293023, 22293025, 22172189, 22172188), CAS Youth Interdisciplinary Team, Program of Shanghai Academic Research Leader (22XD1424100), Science and Technology Commission of Shanghai Municipality (23ZR1481700), Shanghai Sailing Program from the Science and Technology Commission of Shanghai Municipality (23YF1453400), Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (Grant. YLU-DNL Fund 2022001), Qinchuangyuan “Scientists + Engineers” Team Construction Program of Shaanxi Province (2023KXJ-276), and the research program from Shaanxi Beiyuan Chemical Industry Group Co., Ltd. (2023413611014). The authors thank beamline BL11B at the SSRF, Shanghai, P. R. China for the beam time and assistance with experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenggang Li or Peng Gao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Wang, Y., Bao, Y. et al. Nickel-modified In2O3 with inherent oxygen vacancies for CO2 hydrogenation to methanol. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-023-1929-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-023-1929-1

Navigation