Skip to main content
Log in

Direct enantioselective reduction of C=C bond of β-polyfluoro-alkylated enones via asymmetric photoredox catalysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Direct enantioselective reduction of the C=C bond of β-polyfluoro-alkylated enones is an important but long-pending subject in asymmetric catalysis. Here, we report on the viability of visible light-driven cooperative photoredox and chiral hydrogen-bonding catalysis to effectively address this challenge, as a variety of products are obtained in high yields (up to 85%) with good to excellent enantioselectivities (up to 98% ee). The formation of thermodynamically favorable enol intermediates after double single-electron reduction represents the center of the success. Additionally, the utility of the current method is validated by the convenient regio-specific and -diverse synthesis of various deuterated derivatives for these products using inexpensive D2O as the deuterium source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie JH, Zhu SF, Zhou QL. Chem Soc Rev, 2012, 41: 4126–4139

    Article  PubMed  CAS  Google Scholar 

  2. Etayo P, Vidal-Ferran A. Chem Soc Rev, 2013, 42: 728–754

    Article  PubMed  CAS  Google Scholar 

  3. Verendel JJ, Pàmies O, Diéguez M, Andersson PG. Chem Rev, 2013, 114: 2130–2169

    Article  PubMed  Google Scholar 

  4. Murata T, Yoneta Y, Mihara J, Domon K, Hatazawa M, Araki K, Shimojo E, Shibuya K, Ichihara T, Goergens U, Voerste A, Becker A, Franken EM, Mueller KH. Aryl-azole compounds as pesticides and their preparation. PCT Int Appl, 2009, WO 2009112275, A1 20090917

  5. Murata T, Yoneda Y, Domon T, Shimojo E, Ichihara T, Ataka M, Shibuya K, Goerens U. Process for the preparation of pyrrolines from gamma-nitroketones use of the gamma-nitroketones as pesticidal agents. Jpn Kokai Tokkyo Hoho, 2011, JP 2011219431, A 20111104

  6. Frackenpohl J, Mueller T, Heinemann I, Von Koskull-Doering P, Rosinger C, Haeuser-Hahn I, Hills M. Preparation of substituted vinyl and alkynyl cyclohexenols as active agents against abiotic stress in plants. PCT Int Appl, 2012, WO 2012139891, A1 20121018

  7. Lamberth C, Cederbaum F, Berthon G, Sulzer-Mosse S..Pyrazole derivatives and their preparation and use as fungicides. PCT Int Appl, 2012, WO 2012107477, A1 20120816

  8. Desroy N, De Lemos E, Couty S, Picolet O, Wang X, Searle X, Liu B, Yeung MC, Altenbach RJ, Gfesser GA, Kym PR. Preparation of substituted pyrrolidines as CFTR modulators and their use. PCT Int Appl, 2019, WO 2019193062, A1 20191010

  9. Bizet V, Pannecoucke X, Renaud J, Cahard D. Angew Chem Int Ed, 2012, 51: 6467–6470

    Article  CAS  Google Scholar 

  10. Bizet V, Pannecoucke X, Renaud JL, Cahard D. J Fluorine Chem, 2013, 152: 56–61

    Article  CAS  Google Scholar 

  11. Xia X, Wu M, Jin R, Cheng T, Liu G. Green Chem, 2015, 17: 3916–3922

    Article  CAS  Google Scholar 

  12. Martinez-Erro S, Sanz-Marco A, Bermejo Gómez A, Vázquez-Romero A, Ahlquist MSG, Martín-Matute B. J Am Chem Soc, 2016, 138: 13408–13414

    Article  PubMed  CAS  Google Scholar 

  13. Hamada Y, Kawasaki-Takasuka T, Yamazaki T. Beilstein J Org Chem, 2017, 13: 1507–1512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Li X, Wu X, Tang L, Xie F, Zhang W. Chem-An Asian J, 2019, 14: 3835–3839

    Article  CAS  Google Scholar 

  15. Gu Y, Norton JR, Salahi F, Lisnyak VG, Zhou Z, Snyder SA. J Am Chem Soc, 2021, 143: 9657–9663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Shinohara N, Haga J, Yamazaki T, Kitazume T, Nakamura S. J Org Chem, 1995, 60: 4363–4374

    Article  CAS  Google Scholar 

  17. Yamazaki T, Shinohara N, Kitazume T, Sato S. J Org Chem, 1995, 60: 8140–8141

    Article  CAS  Google Scholar 

  18. Huang Y, Tokunaga E, Suzuki S, Shiro M, Shibata N. Org Lett, 2010, 12: 1136–1138

    Article  PubMed  CAS  Google Scholar 

  19. Wang W, Lian X, Chen D, Liu X, Lin L, Feng X. Chem Commun, 2011, 47: 7821

    Article  CAS  Google Scholar 

  20. Yang H, Weng G, Fang D, Peng C, Zhang Y, Zhang X, Wang Z. RSC Adv, 2019, 9: 11627–11633

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  21. Biosca M, Pàmies O, Diéguez M. J Org Chem, 2019, 84: 8259–8266

    Article  PubMed  CAS  Google Scholar 

  22. Sugiura M, Ashikari Y, Takahashi Y, Yamaguchi K, Kotani S, Nakajima M. J Org Chem, 2019, 84: 11458–11473

    Article  PubMed  CAS  Google Scholar 

  23. Guo S, Wang X, Zhou JS. Org Lett, 2020, 22: 1204–1207

    Article  PubMed  CAS  Google Scholar 

  24. Na F, Lopez SS, Beauseigneur A, Hernandez LW, Sun Z, Antilla JC. Org Lett, 2020, 22: 5953–5957

    Article  PubMed  CAS  Google Scholar 

  25. Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang L, Sun J, Xia J, Li M, Zhang L, Ma R, Zheng G, Zhang Q. Sci China Chem, 2022, 65: 1938–1944

    Article  CAS  Google Scholar 

  27. Jiang C, Chen P, Liu G. Sci China Chem, 2023, 66: 2858–2862

    Article  CAS  Google Scholar 

  28. Zou YQ, Hörmann FM, Bach T. Chem Soc Rev, 2018, 47: 278–290

    Article  PubMed  CAS  Google Scholar 

  29. Jiang C, Chen W, Zheng WH, Lu H. Org Biomol Chem, 2019, 17: 8673–8689

    Article  PubMed  CAS  Google Scholar 

  30. Yin Y, Zhao X, Qiao B, Jiang Z. Org Chem Front, 2020, 7: 1283–1296

    Article  CAS  Google Scholar 

  31. Lv X, Xu H, Yin Y, Zhao X, Jiang Z. Chin J Chem, 2020, 38: 1480–1488

    Article  CAS  Google Scholar 

  32. Yao W, Bazan-Bergamino EA, Ngai M. ChemCatChem, 2022, 14: e202101292

    Article  PubMed  CAS  Google Scholar 

  33. Cao K, Tan SM, Lee R, Yang S, Jia H, Zhao X, Qiao B, Jiang Z. J Am Chem Soc, 2019, 141: 5437–5443

    Article  PubMed  CAS  Google Scholar 

  34. Cao K, Li C, Tian D, Zhao X, Yin Y, Jiang Z. Org Lett, 2022, 24: 4788–4792

    Article  PubMed  CAS  Google Scholar 

  35. Yin Y, Zhao X, Jiang Z. ChemCatChem, 2020, 12: 4471–4489

    Article  CAS  Google Scholar 

  36. Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev, 2008, 37: 320–330

    Article  PubMed  CAS  Google Scholar 

  37. Yin Y, Dai Y, Jia H, Li J, Bu L, Qiao B, Zhao X, Jiang Z. J Am Chem Soc, 2018, 140: 6083–6087

    Article  PubMed  CAS  Google Scholar 

  38. Liu X, Liu Y, Chai G, Qiao B, Zhao X, Jiang Z. Org Lett, 2018, 20: 6298–6301

    Article  PubMed  CAS  Google Scholar 

  39. Yin Y, Li Y, Gonçalves TP, Zhan Q, Wang G, Zhao X, Qiao B, Huang KW, Jiang Z. J Am Chem Soc, 2020, 142: 19451–19456

    Article  PubMed  CAS  Google Scholar 

  40. Kong M, Tan Y, Zhao X, Qiao B, Tan CH, Cao S, Jiang Z. J Am Chem Soc, 2021, 143: 4024–4031

    Article  PubMed  CAS  Google Scholar 

  41. Guo Z, Chen X, Fang H, Zhao X, Jiang Z. Sci China Chem, 2021, 64: 1522–1529

    Article  CAS  Google Scholar 

  42. Chai X, Hu X, Zhao X, Yin Y, Cao S, Jiang Z. Angew Chem Int Ed, 2022, 61: e202115110

    Article  CAS  Google Scholar 

  43. Liu Y, Zhang L, Zhang Y, Cao S, Ban X, Yin Y, Zhao X, Jiang Z. J Am Chem Soc, 2023, 145: 18307–18315

    Article  PubMed  CAS  Google Scholar 

  44. Ma C, Shen J, Qu C, Shao T, Cao S, Yin Y, Zhao X, Jiang Z. J Am Chem Soc, 2023, 145: 20141–20148

    Article  PubMed  CAS  Google Scholar 

  45. Lin L, Bai X, Ye X, Zhao X, Tan C, Jiang Z. Angew Chem Int Ed, 2017, 56: 13842–13846

    Article  CAS  Google Scholar 

  46. Hou M, Lin L, Chai X, Zhao X, Qiao B, Jiang Z. Chem Sci, 2019, 10: 6629–6634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Qiao B, Li C, Zhao X, Yin Y, Jiang Z. Chem Commun, 2019, 55: 7534–7537

    Article  Google Scholar 

  48. Gu Z, Zhang L, Li H, Cao S, Yin Y, Zhao X, Ban X, Jiang Z. Angew Chem Int Ed, 2022, 61

  49. Wang G, Li L, Jiang Y, Zhao X, Ban X, Shao T, Yin Y, Jiang Z. Angew Chem Int Ed, 2023, 62: e202214838

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22171072, 21925103, 22301061) and Henan Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Jiang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Published in virtual special issue “Chiral Photochemistry”

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11426_2023_1896_MOESM1_ESM.pdf

Supporting Information: Direct Enantioselective Reduction of C=C Bond of β-Polyfluoro-alkylated Enones via Asymmetric Photoredox Catalysis

Supplementary material, approximately 493 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ma, J., Ban, X. et al. Direct enantioselective reduction of C=C bond of β-polyfluoro-alkylated enones via asymmetric photoredox catalysis. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-023-1896-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-023-1896-5

Navigation