Skip to main content
Log in

Generation, bonding and reactivity of transient zinc-substituted silylenes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The metal-substituted silylenes are of high interest, as the theoretical studies indicated that the silylenes with electropositive substituents have a small ΔES−T (singlet-triplet energy gap) or even the ground-state triplets. However, such compounds are highly unstable, and only two transient alkali metal-substituted silylenes M(tBu3Si)Si: (M = Li, K) were generated by photoextrusion of the alkali metal-substituted silacyclopropenes and merely studied by spectroscopic method (EPR) at low temperature (14 to 50 K). Herein, we report the generation of transient zinc-substituted silylenes from zinc silacyclopropanyl complexes under very mild and convenient conditions. The generated transient zinc-substituted silylenes are highly reactive and undergo intermolecular cycloaddition with alkenes for the synthesis of zinc-substituted Si-heterocyclic compounds. If there is no substrate, the zinc-substituted silylenes attack the C-C bonds of the β-diketiminato ligands and break the C-C bonds. DFT studies further highlight the silylene nature of the zinc-substituted silylene and a very small ΔES−T (4.4 kcal/mol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill NJ, West R. J Organomet Chem, 2004, 689: 4165–4183

    Article  CAS  Google Scholar 

  2. Mizuhata Y, Sasamori T, Tokitoh N. Chem Rev, 2009, 109: 3479–3511

    Article  CAS  PubMed  Google Scholar 

  3. Blom B, Driess M. FunctionalMolecularSiliconCompoundsII. Cham: Springer, 2013. 85–123

    Google Scholar 

  4. Jutzi P, Kanne D, Krüger C. Angew Chem Int Ed, 1986, 25: 164

    Article  Google Scholar 

  5. Asay M, Jones C, Driess M. Chem Rev, 2011, 111: 354–396

    Article  CAS  PubMed  Google Scholar 

  6. Yao S, Xiong Y, Driess M. Organometallics, 2011, 30: 1748–1767

    Article  CAS  Google Scholar 

  7. Baradzenka AG, Pilkington M, Dmitrienko A, Simionescu R, Nikonov GI. Inorg Chem, 2021, 60: 13110–13121

    Article  CAS  PubMed  Google Scholar 

  8. Wang W, Inoue S, Yao S, Driess M. J Am Chem Soc, 2010, 132: 15890–15892

    Article  CAS  PubMed  Google Scholar 

  9. Protchenko AV, Birjkumar KH, Dange D, Schwarz AD, Vidovic D, Jones C, Kaltsoyannis N, Mountford P, Aldridge S. J Am Chem Soc, 2012, 134: 6500–6503

    Article  CAS  PubMed  Google Scholar 

  10. Tokitoh N, Okazaki R. Coord Chem Rev, 2000, 210: 251–277

    Article  CAS  Google Scholar 

  11. Kira M. J Organomet Chem, 2004, 689: 4475–4488

    Article  CAS  Google Scholar 

  12. Reiter D, Holzner R, Porzelt A, Altmann PJ, Frisch P, Inoue S. J Am Chem Soc, 2019, 141: 13536–13546

    Article  CAS  PubMed  Google Scholar 

  13. Haas M, Knoechl A, Wiesner T, Torvisco A, Fischer R, Jones C. Organometallics, 2019, 38: 4158–4170

    Article  CAS  Google Scholar 

  14. Keuter J, Hepp A, Massolle A, Neugebauer J, Mück-Lichtenfeld C, Lips F. Angew Chem Int Ed, 2022, 61: e202114485

    Article  CAS  Google Scholar 

  15. Kira M, Ishida S, Iwamoto T, Kabuto C. J Am Chem Soc, 1999, 121: 9722–9723

    Article  CAS  Google Scholar 

  16. Kira M, Iwamoto T, Ishida S. Bull Chem Soc Jpn, 2007, 80: 258–275

    Article  CAS  Google Scholar 

  17. Sekiguchi A, Tanaka T, Ichinohe M, Akiyama K, Gaspar PP. J Am Chem Soc, 2008, 130: 426–427

    Article  CAS  PubMed  Google Scholar 

  18. Harrison JF, Liedtke RC, Liebman JF. J Am Chem Soc, 1979, 101: 7162–7168

    Article  CAS  Google Scholar 

  19. Colvin ME, Breulet J, SchaeferIII HF. Tetrahedron, 1985, 41: 1429–1434

    Article  CAS  Google Scholar 

  20. Krogh-Jespersen K. J Am Chem Soc, 1985, 107: 537–543

    Article  CAS  Google Scholar 

  21. Zhu L, Zhang J, Yang H, Cui C. J Am Chem Soc, 2019, 141: 19600–19604

    Article  CAS  PubMed  Google Scholar 

  22. Xu C, Ye Z, Xiang L, Yang S, Peng Q, Leng X, Chen Y. Angew Chem Int Ed, 2021, 60: 3189–3195

    Article  CAS  Google Scholar 

  23. Becke AD. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  24. Burke K, Perdew JP, Yang WP, ElectronicDensityFunctionalTheory:RecentProgressandNewDirections. Dobson JF, Vignale G, Das MP, ed. New York, 1998

  25. Moritz A, Cao X, Dolg M. Theor Chem Account, 2007, 118: 845–854

    Article  CAS  Google Scholar 

  26. Höllwarth A, Böhme M, Dapprich S, Ehlers AW, Gobbi A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G. Chem Phys Lett, 1993, 208: 237–240

    Article  Google Scholar 

  27. Hariharan PC, Pople JA. Theoret Chim Acta, 1973, 28: 213–222

    Article  CAS  Google Scholar 

  28. Hehre WJ, Ditchfield R, Pople J A. JChemPhys, 1972, 56: 2257–2270

    CAS  Google Scholar 

  29. Grimme S, Ehrlich S, Goerigk L. J Comput Chem, 2011, 32: 1456–1465

    Article  CAS  PubMed  Google Scholar 

  30. Gaussian 16, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian N, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams YD, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG. Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Wallingford CT: Gaussian, Inc., 2016

  31. Marenich AV, Cramer CJ, Truhlar DG. J Phys Chem B, 2009, 113: 6378–6396

    Article  CAS  PubMed  Google Scholar 

  32. Feng G, Du C, Xiang L, del Rosal I, Li G, Leng X, Chen EYX, Maron L, Chen Y. ACS Catal, 2018, 8: 4710–4718

    Article  CAS  Google Scholar 

  33. Schäfer S, Köppe R, Gamer MT, Roesky PW. Chem Commun, 2014, 50: 11401–11403

    Article  Google Scholar 

  34. Sun X, Röder C, Roesky PW. Inorg Chem, 2021, 60: 13861–13868

    Article  CAS  PubMed  Google Scholar 

  35. Yadav S, Sangtani E, Dhawan D, Gonnade RG, Ghosh D, Sen SS. Dalton Trans, 2017, 46: 11418–11424

    Article  CAS  PubMed  Google Scholar 

  36. Zhao Y, Truhlar DG. ChemPhys, 2006, 124: 224105–224105

    Google Scholar 

  37. Harvey JN. Annu Rep Prog Chem Sect C-Phys Chem, 2006, 102: 203–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21890721, 21732007) and the Shanghai Municipal Committee of Science and Technology. Laurent Maron is a senior member of the Institut Universitaire de France. Laurent Maron acknowledges the Chinese Academy of Sciences President’s International Fellowship Initiative. CalMip is finally acknowledged for a generous grant of computing time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laurent Maron or Yaofeng Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Rajeshkumar, T., Maron, L. et al. Generation, bonding and reactivity of transient zinc-substituted silylenes. Sci. China Chem. 67, 1256–1262 (2024). https://doi.org/10.1007/s11426-023-1890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1890-9

Navigation