Skip to main content
Log in

Heptagonal intramolecular-lock strategy enables high-performance thermally activated delayed fluorescence emitters

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of highly efficient thermally activated delayed fluorescence (TADF) emitters is persistently pursued for the application of organic light-emitting diodes (OLED) in full-colour display and solid-state lighting. Herein, we present a heptagonal intramolecular-lock strategy to design high-performance TADF emitters. As a proof-of-concept, a new type of tribenzotropone (TBP) acceptor has been designed and synthesized by a cascade decarboxylative cyclization of aryl oxoacetic acid derivative with biphenyl boronic acid. Compared with the unlocked benzophenone (BP) acceptor, the TBP acceptor has a highly twisted heptagonal geometry with moderate rigidity and flexibility, which enables a high-performance TADF emitter with a small single-triplet energy gap(ΔEST) of 0.04 eV, a high photoluminescence quantum yield (ΦPL) of 99% and a large horizontal orientation factor (Θ//) of 84.0%. Consequently, highly efficient OLEDs with an external quantum efficiency as high as 33.8% are assembled, which is significantly higher than those of DPAC-BP with a highly rotatable BP acceptor (23.8%) as well as DPAC-FO with a rigid fluorenone (FO) acceptor (6.9%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234–238

    Article  CAS  PubMed  Google Scholar 

  2. Zhao W, He Z, Lam JWY, Peng Q, Ma H, Shuai Z, Bai G, Hao J, Tang BZ. Chem, 2016, 1: 592–602

    Article  CAS  Google Scholar 

  3. Ma H, Peng Q, An Z, Huang W, Shuai Z. J Am Chem Soc, 2019, 141: 1010–1015

    Article  CAS  PubMed  Google Scholar 

  4. Chen J, Wu X, Liu H, Qiu N, Liu Z, Yang D, Ma D, Tang BZ, Zhao Z. CCS Chem, 2023, 5: 598–606

    Article  CAS  Google Scholar 

  5. Chen C, Huang R, Batsanov AS, Pander P, Hsu YT, Chi Z, Dias FB, Bryce MR. Angew Chem Int Ed, 2018, 57: 16407–16411

    Article  CAS  Google Scholar 

  6. Bas EE, Ulukan P, Monari A, Aviyente V, Catak S. J Phys Chem A, 2022, 126: 473–484

    Article  CAS  Google Scholar 

  7. Lee SY, Yasuda T, Yang YS, Zhang Q, Adachi C. Angew Chem Int Ed, 2014, 53: 6402–6406

    Article  CAS  Google Scholar 

  8. Zhang Q, Tsang D, Kuwabara H, Hatae Y, Li B, Takahashi T, Lee SY, Yasuda T, Adachi C. Adv Mater, 2015, 27: 2096–2100

    Article  CAS  PubMed  Google Scholar 

  9. Fu Y, Liu H, Yang D, Ma D, Zhao Z, Tang BZ. Sci Adv, 2021, 7: eabj2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xie Y, Hua L, Wang Z, Liu Y, Ying S, Liu Y, Ren Z, Yan S. Sci China Chem, 2023, 66: 826–836

    CAS  Google Scholar 

  11. Huang R, Chen H, Liu H, Zhuang Z, Wang J, Yu M, Yang D, Ma D, Zhao Z, Zhong Tang B. Chem Eng J, 2022, 435: 134934

    Article  CAS  Google Scholar 

  12. Huang J, Nie H, Zeng J, Zhuang Z, Gan S, Cai Y, Guo J, Su SJ, Zhao Z, Tang BZ. Angew Chem Int Ed, 2017, 56: 12971–12976

    Article  CAS  Google Scholar 

  13. Liu H, Zeng J, Guo J, Nie H, Zhao Z, Tang BZ. Angew Chem Int Ed, 2018, 57: 9290–9294

    Article  CAS  Google Scholar 

  14. Ahn DH, Kim SW, Lee H, Ko IJ, Karthik D, Lee JY, Kwon JH. Nat Photonics, 2019, 13: 540–546

    Article  CAS  Google Scholar 

  15. Tang X, Cui LS, Li HC, Gillett AJ, Auras F, Qu YK, Zhong C, Jones STE, Jiang ZQ, Friend RH, Liao LS. Nat Mater, 2020, 19: 1332–1338

    Article  CAS  PubMed  Google Scholar 

  16. Xia G, Qu C, Zhu Y, Ye J, Ye K, Zhang Z, Wang Y. Angew Chem Int Ed, 2021, 60: 9598–9603

    Article  CAS  Google Scholar 

  17. Rajamalli P, Senthilkumar N, Huang PY, Ren-Wu CC, Lin HW, Cheng CH. J Am Chem Soc, 2017, 139: 10948–10951

    Article  CAS  PubMed  Google Scholar 

  18. Ma F, Zhao G, Zheng Y, He F, Hasrat K, Qi Z. ACS Appl Mater Interfaces, 2020, 12: 1179–1189

    Article  CAS  PubMed  Google Scholar 

  19. Lee J, Aizawa N, Numata M, Adachi C, Yasuda T. Adv Mater, 2017, 29: 1604856

    Article  Google Scholar 

  20. Min H, Park IS, Yasuda T. Adv Opt Mater, 2022, 10: 2200290

    Article  CAS  Google Scholar 

  21. Wu X, Peng X, Chen L, Tang BZ, Zhao Z. ACS Mater Lett, 2023, 5: 664–672

    Article  CAS  Google Scholar 

  22. Aizawa N, Matsumoto A, Yasuda T. Sci Adv, 2021, 7: eabe5769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuan Y, Tang X, Du XY, Hu Y, Yu YJ, Jiang ZQ, Liao LS, Lee ST. Adv Opt Mater, 2019, 7: 1801536

    Article  Google Scholar 

  24. Wu S, Kumar Gupta A, Yoshida K, Gong J, Hall D, Cordes DB, Slawin AMZ, Samuel IDW, Zysman-Colman E. Angew Chem Int Ed, 2022, 61: e202213697

    Article  CAS  Google Scholar 

  25. Li B, Liu M, Sang L, Li Z, Wan X, Zhang Y. Adv Opt Mater, 2023, 11: 2202610

    Article  CAS  Google Scholar 

  26. Wu L, Wang K, Wang C, Fan XC, Shi YZ, Zhang X, Zhang SL, Ye J, Zheng CJ, Li YQ, Yu J, Ou XM, Zhang XH. Chem Sci, 2020, 12: 1495–1502

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ma W, Bin Z, Yang G, Liu J, You J. Angew Chem Int Ed, 2022, 61: e202116681

    Article  CAS  Google Scholar 

  28. Huang Z, Bin Z, Su R, Yang F, Lan J, You J. Angew Chem Int Ed, 2020, 59: 9992–9996

    Article  CAS  Google Scholar 

  29. Huang Z, Lei B, Yang D, Ma D, Bin Z, You J. Angew Chem Int Ed, 2022, 61: e202213157

    Article  CAS  Google Scholar 

  30. Lei B, Huang Z, Li S, Liu J, Bin Z, You J. Angew Chem Int Ed, 2023, 62: e202218405

    Article  CAS  Google Scholar 

  31. Ma Y, Zhang K, Zhang Y, Song Y, Lin L, Wang CK, Fan J. J Phys Chem A, 2021, 125: 175–186

    Article  CAS  PubMed  Google Scholar 

  32. Chen F, Zhao L, Wang X, Yang Q, Li W, Tian H, Shao S, Wang L, Jing X, Wang F. Sci China Chem, 2021, 64: 547–551

    Article  Google Scholar 

  33. Wu Z, Zhang Q, Wang X, Zhang K, Li X, Mu Q, Song Y, Fan J, Wang CK, Lin L. J Lumin, 2022, 251: 119263

    Article  CAS  Google Scholar 

  34. Pun SH, Wang Y, Chu M, Chan CK, Li Y, Liu Z, Miao Q. J Am Chem Soc, 2019, 141: 9680–9686

    Article  CAS  PubMed  Google Scholar 

  35. Xie Y, Liu H, Li Z, Zhang X, Song L, Zhou K, Yuan F, You H, Zhao E, He Z. Sci China Chem, 2023, 66: 2083–2090

    Article  CAS  Google Scholar 

  36. Zhang D, Song X, Cai M, Duan L. Adv Mater, 2018, 30: 1705250

    Article  Google Scholar 

  37. Zhang Y, Zhang D, Tsuboi T, Qiu Y, Duan L. Sci China Chem, 2019, 62: 393–402

    Article  CAS  Google Scholar 

  38. He S, Liu J, Yang G, Bin Z, You J. Mater Horiz, 2022, 9: 2818–2823

    Article  CAS  PubMed  Google Scholar 

  39. CCDC 2253947 (DMAC-TBP) and 2253946 (DPAC-TBP) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre

  40. Chen X, Tan S, Qin C, Wang Y, Lee HL, Lee KH, Qin K, Ma H, Zhu W, Lee JY. Chem Eng J, 2022, 428: 131691

    Article  CAS  Google Scholar 

  41. Li M, Liu Y, Duan R, Wei X, Yi Y, Wang Y, Chen CF. Angew Chem Int Ed, 2017, 56: 8818–8822

    Article  CAS  Google Scholar 

  42. Gan L, Xu Z, Wang Z, Li B, Li W, Cai X, Liu K, Liang Q, Su SJ. Adv Funct Mater, 2019, 29: 1808088

    Article  Google Scholar 

  43. Li W, Li B, Cai X, Gan L, Xu Z, Li W, Liu K, Chen D, Su SJ. Angew Chem Int Ed, 2019, 58: 11301–11305

    Article  CAS  Google Scholar 

  44. Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv Mater, 2014, 26: 7931–7958

    Article  CAS  PubMed  Google Scholar 

  45. Wong MY, Zysman-Colman E. Adv Mater, 2017, 29: 1605444

    Article  Google Scholar 

  46. Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP. Chem Soc Rev, 2017, 46: 915–1016

    Article  CAS  PubMed  Google Scholar 

  47. Mayr C, Lee SY, Schmidt TD, Yasuda T, Adachi C, Brütting W. Adv Funct Mater, 2014, 24: 5232–5239

    Article  CAS  Google Scholar 

  48. Zeng W, Lai HY, Lee WK, Jiao M, Shiu YJ, Zhong C, Gong S, Zhou T, Xie G, Sarma M, Wong KT, Wu CC, Yang C. Adv Mater, 2018, 30: 1704961

    Article  Google Scholar 

  49. Yu YJ, Tang X, Ge HT, Yuan Y, Jiang ZQ, Liao LS. Org Electron, 2019, 73: 240–246

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22275127, 22031007, 22005204). We thank Dr. Jing Li (Sichuan University) for the assistance with NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengyang Bin or Jingsong You.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Support Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Yang, D., Ma, D. et al. Heptagonal intramolecular-lock strategy enables high-performance thermally activated delayed fluorescence emitters. Sci. China Chem. 67, 1181–1186 (2024). https://doi.org/10.1007/s11426-023-1869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1869-4

Navigation