Skip to main content
Log in

Methane activation by [LnO]+: the 4f orbital matters

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Gas-phase reactions of [LnO]+ with methane have been studied by using inductively coupled plasma-mass spectrometer (ICPMS) combined with quantum chemical calculations. Experiments indicate that the [LnO]+ (Ln=Sm-Lu) ions are able to activate methane to generate methyl radicals. In particular, [EuO]+ and [YbO]+ exhibit the highest reactivity. Interestingly, ab initio computations reveal a novel HAT process operating in the absence of a terminal oxygen radical, as mediated by [EuO]+ and [YbO]+. Such a process diverges from previous findings on the methane activation by metal oxide clusters, not only on the electronic pattern during the course of hydrogen transfer, but also on the important role that 4f electrons play. The associated electronic origins have been discussed, and the well-designed 4f electron occupation may turn to be a promising approach in constructing lanthanide involved catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Li X, Pei C, Gong J. Chem, 2021, 7: 1755–1801

    Article  CAS  Google Scholar 

  2. Zhao W. Natl Sci Rev, 2022, 9: nwac115

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tang Y, Li Y, (Feng) Tao F. Chem Soc Rev, 2022, 51: 376–423

    Article  CAS  PubMed  Google Scholar 

  4. Lang SM, Bernhardt TM. Phys Chem Chem Phys, 2012, 14: 9255–9269

    Article  CAS  PubMed  Google Scholar 

  5. Roithová J, Schröder D. Chem Rev, 2010, 110: 1170–1211

    Article  PubMed  Google Scholar 

  6. Fielicke A. Chem Soc Rev, 2023, 52: 3778–3841

    Article  CAS  PubMed  Google Scholar 

  7. Castleman AW, Bowen KH. J Phys Chem, 1996, 100: 12911–12944

    Article  CAS  Google Scholar 

  8. Morse MD. Chem Rev, 1986, 86: 1049–1109

    Article  CAS  Google Scholar 

  9. Böhme DK, Schwarz H. Angew Chem Int Ed, 2005, 44: 2336–2354

    Article  Google Scholar 

  10. Luo Z, Castleman Jr. AW, Khanna SN. Chem Rev, 2016, 116: 14456–14492

    Article  CAS  PubMed  Google Scholar 

  11. Liu G, Zhu Z, Ciborowski SM, Ariyarathna IR, Miliordos E, Bowen KH. Angew Chem Int Ed, 2019, 58: 7773–7777

    Article  CAS  Google Scholar 

  12. Wensink FJ, Roos N, Bakker JM, Armentrout PB. Inorg Chem, 2022, 61: 11252–11260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wheeler OW, Salem M, Gao A, Bakker JM, Armentrout PB. Int J Mass Spectrometry, 2019, 435: 78–92

    Article  CAS  Google Scholar 

  14. Lengyel J, Levin N, Wensink FJ, Lushchikova OV, Barnett RN, Landman U, Heiz U, Bakker JM, Tschurl M. Angew Chem Int Ed, 2020, 59: 23631–23635

    Article  CAS  Google Scholar 

  15. Lang SM, Bernhardt TM, Chernyy V, Bakker JM, Barnett RN, Landman U. Angew Chem Int Ed, 2017, 56: 13406–13410

    Article  CAS  Google Scholar 

  16. Harding DJ, Kerpal C, Meijer G, Fielicke A. Angew Chem Int Ed, 2012, 51: 817–819

    Article  CAS  Google Scholar 

  17. Wang MM, Zhao YX, Ding XL, Li W, He SG. Phys Chem Chem Phys, 2020, 22: 6231–6238

    Article  CAS  PubMed  Google Scholar 

  18. Levin N, Lengyel J, Eckhard JF, Tschurl M, Heiz U. J Am Chem Soc, 2020, 142: 5862–5869

    Article  CAS  PubMed  Google Scholar 

  19. Guo M, Zhou S, Sun X. J Phys Chem Lett, 2023, 14: 1633–1640

    Article  CAS  PubMed  Google Scholar 

  20. Lengyel J, Levin N, Onèák M, Jakob K, Tschurl M, Heiz U. Chem Eur J, 2023, 29: e202203259

    Article  CAS  PubMed  Google Scholar 

  21. Lang SM, Bernhardt TM, Barnett RN, Landman U. J Phys Chem C, 2011, 115: 6788–6795

    Article  CAS  Google Scholar 

  22. Yang Y, Li YK, Zhao YX, Wei GP, Ren Y, Asmis KR, He SG. Angew Chem Int Ed, 2021, 60: 13788–13792

    Article  CAS  Google Scholar 

  23. Mayer JM. Acc Chem Res, 2011, 44: 36–46

    Article  CAS  PubMed  Google Scholar 

  24. Dietl N, Schlangen M, Schwarz H. Angew Chem Int Ed, 2012, 51: 5544–5555

    Article  CAS  Google Scholar 

  25. Ding XL, Wu XN, Zhao YX, He SG. Acc Chem Res, 2012, 45: 382–390

    Article  CAS  PubMed  Google Scholar 

  26. Lai W, Li C, Chen H, Shaik S. Angew Chem Int Ed, 2012, 51: 5556–5578

    Article  CAS  Google Scholar 

  27. Schwarz H. Isr J Chem, 2014, 54: 1413–1431

    Article  CAS  Google Scholar 

  28. Salamone M, Bietti M. Acc Chem Res, 2015, 48: 2895–2903

    Article  CAS  PubMed  Google Scholar 

  29. Schwarz H. Chem Phys Lett, 2015, 629: 91–101

    Article  CAS  Google Scholar 

  30. Wang ZC, Wu XN, Zhao YX, Ma JB, Ding XL, He SG. Chem Phys Lett, 2010, 489: 25–29

    Article  CAS  Google Scholar 

  31. Zhou S, Yue L, Schlangen M, Schwarz H. Angew Chem Int Ed, 2017, 56: 14297–14300

    Article  CAS  Google Scholar 

  32. Wu L, Ge X, Tang SY, Zhou S. J Phys Chem Lett, 2021, 12: 11730–11735

    Article  CAS  PubMed  Google Scholar 

  33. Hammes-Schiffer S. Chem Rev, 2010, 110: 6937-6938

    Article  CAS  PubMed  Google Scholar 

  34. Siegbahn PEM, Blomberg MRA. Chem Rev, 2010, 110: 7040–7061

    Article  CAS  PubMed  Google Scholar 

  35. Warren JJ, Tronic TA, Mayer JM. Chem Rev, 2010, 110: 6961–7001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Chem Rev, 2012, 112: 4016–4093

    Article  CAS  PubMed  Google Scholar 

  37. Migliore A, Polizzi NF, Therien MJ, Beratan DN. Chem Rev, 2014, 114: 3381–3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hammes-Schiffer S. J Am Chem Soc, 2015, 137: 8860–8871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou S, Li J, Schlangen M, Schwarz H. Angew Chem Int Ed, 2017, 56: 413–416

    Article  CAS  Google Scholar 

  40. Zhou S, Li J, Schlangen M, Schwarz H. Angew Chem Int Ed, 2016, 55: 14867–14871

    Article  CAS  Google Scholar 

  41. Merriles DM, London A, Tieu E, Nielson C, Morse MD. Inorg Chem, 2023, 62: 9589–9601

    Article  CAS  PubMed  Google Scholar 

  42. Smiles DE, Batista ER, Booth CH, Clark DL, Keith JM, Kozimor SA, Martin RL, Minasian SG, Shuh DK, Stieber SCE, Tyliszczak T. Chem Sci, 2020, 11: 2796–2809

    Article  PubMed  PubMed Central  Google Scholar 

  43. Merriles DM, Tomchak KH, Ewigleben JC, Morse MD. J Chem Phys, 2021, 155: 144303

    Article  CAS  PubMed  Google Scholar 

  44. Sorensen JJ, Tieu E, Morse MD. J Chem Phys, 2021, 154: 124307

    Article  CAS  PubMed  Google Scholar 

  45. Lachowicz A, Perez EH, Shuman NS, Ard SG, Viggiano AA, Armentrout PB, Goings JJ, Sharma P, Li X, Johnson MA. J Chem Phys, 2021, 155: 174303

    Article  CAS  PubMed  Google Scholar 

  46. Ghiassee M, Christensen EG, Fenn T, Armentrout PB. J Phys Chem A, 2023, 127: 169–180

    Article  CAS  PubMed  Google Scholar 

  47. Armentrout PB. Mass Spectrometry Rev, 2022, 41: 606–626

    Article  CAS  Google Scholar 

  48. Chien AC, Xie IZ, Yeh CH. Mol Catal, 2023, 538: 112974

    Article  CAS  Google Scholar 

  49. Akiki E, Akiki D, Italiano C, Vita A, Abbas-Ghaleb R, Chlala D, Ferrante GD, Laganà M, Pino L, Specchia S. Int J Hydrogen Energy, 2020, 45: 21392–21408

    Article  CAS  Google Scholar 

  50. Sun S, Barnes AJ, Gong X, Lewis RJ, Dummer NF, Bere T, Shaw G, Richards N, Morgan DJ, Hutchings GJ. Catal Sci Technol, 2021, 11: 8052–8064

    Article  CAS  Google Scholar 

  51. Feng R, Niu P, Hou B, Wang Q, Jia L, Lin M, Li D. J Energy Chem, 2022, 67: 342–353

    Article  CAS  Google Scholar 

  52. Alvarez-Galvan C, Falcon H, Cascos V, Troncoso L, Perez-Ferreras S, Capel-Sanchez M, Campos-Martin JM, Alonso JA, Fierro JLG. Int J Hydrogen Energy, 2018, 43: 16834–16845

    Article  CAS  Google Scholar 

  53. Cornehl HH, Heinemann C, Schroeder D, Schwarz H. Organometallics, 1995, 14: 992–999

    Article  CAS  Google Scholar 

  54. Zhou S, Li J, Schlangen M, Schwarz H. Chem Eur J, 2016, 22: 3073–3076

    Article  CAS  PubMed  Google Scholar 

  55. Koyanagi GK, Bohme DK. J Phys Chem A, 2001, 105: 8964–8968

    Article  CAS  Google Scholar 

  56. Meng JH, Zhao YX, He SG. J Phys Chem C, 2013, 117: 17548–17556

    Article  CAS  Google Scholar 

  57. Meng JH, Deng XJ, Li ZY, He SG, Zheng WJ. Chem Eur J, 2014, 20: 5580–5583

    Article  CAS  PubMed  Google Scholar 

  58. Wu XN, Zhao YX, Xue W, Wang ZC, He SG, Ding XL. Phys Chem Chem Phys, 2010, 12: 3984–3997

    Article  CAS  PubMed  Google Scholar 

  59. Ma JB, Meng JH, He SG. ChemPhysChem, 2016, 17: 1112–1118

    Article  CAS  PubMed  Google Scholar 

  60. Otsuka K. J Catal, 1986, 100: 353–359

    Article  CAS  Google Scholar 

  61. Campbell KD, Zhang H, Lunsford JH. J Phys Chem, 1988, 92: 750–753

    Article  CAS  Google Scholar 

  62. Ghiassee M, Stevenson BC, Armentrout PB. Phys Chem Chem Phys, 2021, 23: 2938–2952

    Article  CAS  PubMed  Google Scholar 

  63. Ghiassee M, Kim JS, Armentrout PB. J Chem Phys, 2019, 150: 144309

    Article  PubMed  Google Scholar 

  64. Blagojevic V, Orlova G, Bohme DK. J Am Chem Soc, 2005, 127: 3545–3555

    Article  CAS  PubMed  Google Scholar 

  65. Gibson JK. J Phys Chem A, 2003, 107: 7891–7899

    Article  CAS  Google Scholar 

  66. Zhou S, Schlangen M, Schwarz H. Chem Eur J, 2015, 21: 2123–2131

    Article  CAS  PubMed  Google Scholar 

  67. Kramida A, Ralchenko Y, Reader J, NIST ASD Team. NIST Atomic Spectra Database (Version 5.7.1), National Institute of Standards and Technology, Gaithersburg, MD, 2019

    Google Scholar 

  68. Martin W, Zalubas R, Hagan LJBS, US Dept. of Commerce: Washington DC. Atomic Energy Levels-The Rare Earth Elements, NSRDSNBS-60, Natl. 1978

    Google Scholar 

  69. Chandrasekharaiah MS, Gingerich KA. Thermodynamic properties of gaseous species. In: Handbook on the Physics and Chemistry of Rare Earths: Elsevier, 1989. Vol. 12, pp 409–431

    Article  Google Scholar 

  70. Cox RM, Citir M, Armentrout PB, Battey SR, Peterson KA. J Chem Phys, 2016, 144: 184309

    Article  PubMed  Google Scholar 

  71. Demireva M, Kim JS, Armentrout PB. J Phys Chem A, 2016, 120: 8550–8563

    Article  CAS  PubMed  Google Scholar 

  72. Owen CJ, Kim JS, Armentrout PB. J Chem Phys, 2021, 155: 094303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (2023C01102, 2023C01208) and the “AI for Electrochemistry Program” of Xiamen University (RD2023100101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingxiang Zou, Mincheng Yu or Shaodong Zhou.

Ethics declarations

Conflicts of Interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Zou, J., Yu, M. et al. Methane activation by [LnO]+: the 4f orbital matters. Sci. China Chem. 67, 330–335 (2024). https://doi.org/10.1007/s11426-023-1801-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1801-4

Navigation