Skip to main content
Log in

Ultra-long room temperature phosphorescence of indium-based organic inorganic metal halides for naked-eye-visible afterglow

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Solid-state molecules based on room-temperature phosphorescent (RTP) emission have received extensive attention due to their special optical properties of triplet excitons. However, there are still few solid molecular systems with naked-eye-visible afterglow characteristics. Herein, we introduce 4-phenylbenzylamine (namely PBA) with a long conjugated system into common non-toxic In3+ to form an indium-based organic inorganic halide, whose chemical formula is PBA3[InCl6]·H2O. Interestingly, this hybrid halide generates a RTP emission at 617 nm with a lifetime decay as long as 290.4 ms, expressing a naked-eye-visible afterglow for more than 7 s. The mechanism study shows that the long lifetime RTP originated from the specific lamellar stacking of organic molecules and metal halide units, facilitating the interaction between the inorganic layers and organic layers. Therefore, the material can be potentially used in emergency lighting, information security, and other fields. Meanwhile, this work provides a reference for the design and implementation of a more efficient organic-inorganic hybrid system with the ultralong RTP emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhou B, Xiao G, Yan D. Adv Mater, 2021, 33: 2007571

    Article  CAS  Google Scholar 

  2. Xu LJ, Plaviak A, Lin X, Worku M, He Q, Chaaban M, Kim BJ, Ma B. Angew Chem Int Ed, 2020, 59: 23067–23071

    Article  CAS  Google Scholar 

  3. Gong H, Yu H, Zhang Y, Feng L, Tian Y, Cui G, Fu H. Angew Chem Int Ed, 2023, 62: e202219085

    Article  CAS  Google Scholar 

  4. Liu S, Fang X, Lu B, Yan D. Nat Commun, 2020, 11: 4649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Gecevicius M, Qiu J. Chem Soc Rev, 2016, 45: 2090–2136

    Article  CAS  PubMed  Google Scholar 

  6. Gao R, Kodaimati MS, Yan D. Chem Soc Rev, 2021, 50: 5564–5589

    Article  CAS  PubMed  Google Scholar 

  7. Feng S, Ma Y, Wang S, Gao S, Huang Q, Zhen H, Yan D, Ling Q, Lin Z. Angew Chem Int Ed, 2022, 61: e202116511

    Article  CAS  Google Scholar 

  8. Feng S, Huang Q, Yang S, Lin Z, Ling Q. Chem Sci, 2021, 12: 14451–14458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nie F, Zhou B, Yan D. Chem Eng J, 2023, 453: 139806

    Article  CAS  Google Scholar 

  10. Eftimov T, Kostova I, Arapova A, Patronov G. J Lumin, 2021, 235: 117985

    Article  CAS  Google Scholar 

  11. Zhou B, Yan D. Angew Chem Int Ed, 2019, 58: 15128–15135

    Article  CAS  Google Scholar 

  12. Kunitski M, Eicke N, Huber P, Köhler J, Zeller S, Voigtsberger J, Schlott N, Henrichs K, Sann H, Trinter F, Schmidt LPH, Kalinin A, Schöffler MS, Jahnke T, Lein M, Dörner R. Nat Commun, 2019, 10: 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, Liu J, Chen B, He X, Li X, Wei P, Gao PF, Zhang G, Lam JWY, Tang BZ. Matter, 2022, 5: 3499–3512

    Article  CAS  Google Scholar 

  14. Su H, Hu K, Huang W, Wang T, Zhang X, Chen B, Miao H, Zhang X, Zhang G. Angew Chem Int Ed, 2023, 62: e202218712

    Article  CAS  Google Scholar 

  15. Ning Y, Yang J, Si H, Wu H, Zheng X, Qin A, Tang BZ. Sci China Chem, 2021, 64: 739–744

    Article  CAS  Google Scholar 

  16. Yao X, Shi H, Wang X, Wang H, Li Q, Li Y, Liang J, Li J, He Y, Ma H, Huang W, An Z. Sci China Chem, 2022, 65: 1538–1543

    Article  CAS  Google Scholar 

  17. Kabe R, Adachi C. Nature, 2017, 550: 384–387

    Article  CAS  PubMed  Google Scholar 

  18. Zhao JQ, Han MF, Zhao XJ, Ma YY, Jing CQ, Pan HM, Li DY, Yue CY, Lei XW. Adv Opt Mater, 2021, 9: 2100556

    Article  CAS  Google Scholar 

  19. Zhou C, Xu LJ, Lee S, Lin H, Ma B. Adv Opt Mater, 2020, 9: 2001766

    Article  Google Scholar 

  20. Salah MBH, Mercier N, Dittmer J, Zouari N, Botta C. Angew Chem Int Ed, 2021, 60: 834–839

    Article  Google Scholar 

  21. Wu S, Zhou B, Yan D. ACS Appl Mater Interfaces, 2021, 13: 26451–26460

    Article  CAS  PubMed  Google Scholar 

  22. Zhu LL, Huang YE, Gong LK, Huang XY, Qi XH, Wu XH, Du KZ. Chem Mater, 2020, 32: 1454–1460

    Article  CAS  Google Scholar 

  23. Yuan M, Quan LN, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard EM, Kanjanaboos P, Lu Z, Kim DH, Sargent EH. Nat Nanotech, 2016, 11: 872–877

    Article  CAS  Google Scholar 

  24. Saidaminov MI, Almutlaq J, Sarmah S, Dursun I, Zhumekenov AA, Begum R, Pan J, Cho N, Mohammed OF, Bakr OM. ACS Energy Lett, 2016, 1: 840–845

    Article  CAS  Google Scholar 

  25. Li M, Xia Z. Chem Soc Rev, 2021, 50: 2626–2662

    Article  CAS  PubMed  Google Scholar 

  26. Gmelch M, Achenbach T, Tomkeviciene A, Reineke S. Adv Sci, 2021, 8: 2102104

    Article  CAS  Google Scholar 

  27. Yang S, Zhou B, Huang Q, Wang S, Zhen H, Yan D, Lin Z, Ling Q. ACS Appl Mater Interfaces, 2020, 12: 1419–1426

    Article  CAS  PubMed  Google Scholar 

  28. Chaaban M, Ben-Akacha A, Worku M, Lee S, Neu J, Lin X, Winfred JSRV, Delzer CJ, Hayward JP, Du MH, Siegrist T, Ma B. J Phys Chem Lett, 2021, 12: 8229–8236

    Article  CAS  PubMed  Google Scholar 

  29. Ma YJ, Qi Z, Xiao G, Fang X, Yan D. Inorg Chem, 2022, 61: 16477–16483

    Article  CAS  PubMed  Google Scholar 

  30. Huang Q, Yang S, Feng S, Zhen H, Lin Z, Ling Q. J Phys Chem Lett, 2021, 12: 1040–1045

    Article  CAS  PubMed  Google Scholar 

  31. Dong Y, Han Y, Chen R, Lin Y, Cui BB. J Lumin, 2022, 249: 119013

    Article  CAS  Google Scholar 

  32. Xu T, Cai P, Ai Q, He Q, Si J, Yao X, Liu Z. J Lumin, 2022, 248: 118979

    Article  CAS  Google Scholar 

  33. Wei JH, Ou WT, Luo JB, Kuang DB. Angew Chem Int Ed, 2022, 61: e202207985

    Article  CAS  Google Scholar 

  34. Zhao S, Cai W, Wang H, Zang Z, Chen J. Small Methods, 2021, 5: 2001308

    Article  CAS  Google Scholar 

  35. Zhao X, Wu M, Liu H, Wang Y, Wang K, Yang X, Zou B. Adv Funct Mater, 2021, 32: 2109277

    Article  Google Scholar 

  36. Li B, Jin J, Yin M, Zhang X, Molokeev MS, Xia Z, Xu Y. Angew Chem Int Ed, 2022, 61: e202212741

    Article  CAS  Google Scholar 

  37. Liu J, Zhang H, Dong H, Meng L, Jiang L, Jiang L, Wang Y, Yu J, Sun Y, Hu W, Heeger AJ. Nat Commun, 2015, 6: 10032

    Article  CAS  PubMed  Google Scholar 

  38. Yin F, De J, Liu M, Huang H, Geng H, Yao J, Liao Q, Fu H. Nano Lett, 2022, 22: 5803–5809

    Article  CAS  PubMed  Google Scholar 

  39. Zhang H, Yao J, Fu H. Adv Opt Mater, 2020, 9: 2001135

    Article  Google Scholar 

  40. Han Y, Dong Y, Gu H, Cheng T, Xie Y, Lin Y, Xing G, Yin J, Cui BB. Small Struct, 2022, 3: 2200110

    Article  CAS  Google Scholar 

  41. Luo Z, Liu Y, Liu Y, Li C, Li Y, Li Q, Wei Y, Zhang L, Xu B, Chang X, Quan Z. Adv Mater, 2022, 34: 2200607

    Article  CAS  Google Scholar 

  42. Chen Q, Dai F, Zhang K, Zhou H, Zhang M, Quan D, Wang L, Xing J. J Mater Chem C, 2022, 10: 18279–18284

    Article  CAS  Google Scholar 

  43. Zhang F, Zhou Y, Chen Z, Wang M, Ma Z, Chen X, Jia M, Wu D, Xiao J, Li X, Zhang Y, Shi Z, Shan C. Adv Mater, 2022, 34: 2204801

    Article  CAS  Google Scholar 

  44. An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W. Nat Mater, 2015, 14: 685–690

    Article  CAS  PubMed  Google Scholar 

  45. Perdew JP, Zunger A. Phys Rev B, 1981, 23: 5048–5079

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52172096, 22090022, 21873065, 21833005, and 21790364), the Ministry of Science and Technology of China (2018YFA0704805, 2018YFA0704802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Tian or Hongbing Fu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1721_MOESM1_ESM.pdf

Ultra-long Room Temperature Phosphorescence of Indium-based Organic Inorganic Metal Halides for Naked-eye-visible Afterglow

Supplementary material, approximately 172 KB.

Supplementary material, approximately 225 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Gong, H., Hua, Z. et al. Ultra-long room temperature phosphorescence of indium-based organic inorganic metal halides for naked-eye-visible afterglow. Sci. China Chem. 66, 2576–2582 (2023). https://doi.org/10.1007/s11426-023-1721-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1721-4

Keywords

Navigation