Skip to main content
Log in

Iodopentafluorosulfanylation of [1.1.1]propellane and further functionalizations

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Pentafluorosulfanylated (SF5-) aromatics have shown great potential in drugs, and the bioisosteric replacement of aromatic ring with bicyclo[1.1.1]pentane (BCP) unit has attracted considerable attention recently. Consequently, pentafluorosulfanylated bicyclo[1.1.1]pentanes (SF5-BCPs) should have application in the realm of drug discovery. In this study, a one-pot iodopentafluorosulfanylation of [1.1.1]propellane with SF5Cl and CH2I2 for the practical synthesis of iodopentafluorosulfanylated bicyclo[1.1.1]pentane (SF5-BCP-I) was developed. SF5-BCP-I was the first example of SF5-BCPs that could be transformed. The first general method to access SF5-substituted bicyclo[1.1.1]pentane derivatives was demonstrated through photoredox-catalyzed radical addition of SF5-BCP-I to alkenes and alkynes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muller K, Faeh C, Diederich F. Science, 2007, 317: 1881–1886

    Article  PubMed  Google Scholar 

  2. Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev, 2008, 37: 320–330

    Article  CAS  PubMed  Google Scholar 

  3. Hagmann WK. J Med Chem, 2008, 51: 4359–4369

    Article  CAS  PubMed  Google Scholar 

  4. Meanwell NA. J Med Chem, 2018, 61: 5822–5880

    Article  CAS  PubMed  Google Scholar 

  5. Savoie PR, Welch JT. Chem Rev, 2015, 115: 1130–1190

    Article  CAS  PubMed  Google Scholar 

  6. Sowaileh MF, Hazlitt RA, Colby DA. ChemMedChem, 2017, 12: 1481–1490

    Article  CAS  PubMed  Google Scholar 

  7. Kordnezhadian R, Li B, Zogu A, Demaerel J, De Borggraeve WM, Ismalaj E. Chem Eur J, 2022, 28: e202201491

    Article  CAS  PubMed  Google Scholar 

  8. Sani M, Zanda M. Synthesis, 2022, 54: 4184–4209

    Article  CAS  Google Scholar 

  9. Macdonald JD, Chacón Simon S, Han C, Wang F, Shaw JG, Howes JE, Sai J, Yuh JP, Camper D, Alicie BM, Alvarado J, Nikhar S, Payne W, Aho ER, Bauer JA, Zhao B, Phan J, Thomas LR, Rossanese OW, Tansey WP, Waterson AG, Stauffer SR, Fesik SW. J Med Chem, 2019, 62: 11232–11259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salamoun JM, Garcia CJ, Hargett SR, Murray JH, Chen SY, Beretta M, Alexopoulos SJ, Shah DP, Olzomer EM, Tucker SP, Hoehn KL, Santos WL. J Med Chem, 2020, 63: 6203–6224

    Article  CAS  PubMed  Google Scholar 

  11. Codony S, Pujol E, Pizarro J, Feixas F, Valverde E, Loza MI, Brea JM, Saez E, Oyarzabal J, Pineda-Lucena A, Pérez B, Pérez C, Rodríguez-Franco MI, Leiva R, Osuna S, Morisseau C, Hammock BD, Vázquez-Carrera M, Vázquez S. J Med Chem, 2020, 63: 9237–9257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang H, Jensen K, Houang E, McRobb FM, Bhat S, Svensson M, Bochevarov A, Day T, Dahlgren MK, Bell JA, Frye L, Skene RJ, Lewis JH, Osborne JD, Tierney JP, Gordon JA, Palomero MA, Gallati C, Chapman RSL, Jones DR, Hirst KL, Sephton M, Chauhan A, Sharpe A, Tardia P, Dechaux EA, Taylor A, Waddell RD, Valentine A, Janssens HB, Aziz O, Bloomfield DE, Ladha S, Fraser IJ, Ellard JM. J Med Chem, 2022, 65: 6775–6802

    Article  CAS  PubMed  Google Scholar 

  13. Faber EB, Wang N, John K, Sun L, Wong HL, Burban D, Francis R, Tian D, Hong KH, Yang A, Wang L, Elsaid M, Khalid H, Levinson NM, Schönbrunn E, Hawkinson JE, Georg GI. J Med Chem, 2023, 66: 1928–1940

    Article  CAS  PubMed  Google Scholar 

  14. Lovering F, Bikker J, Humblet C. J Med Chem, 2009, 52: 6752–6756

    Article  CAS  PubMed  Google Scholar 

  15. For recent reviews, see: (a) Kanazawa J, Uchiyama M. Synlett, 2019, 30: 1–11

    Article  CAS  Google Scholar 

  16. Ma X, Nhat Pham L. Asian J Org Chem, 2020, 9: 8–22

    Article  CAS  Google Scholar 

  17. He FS, Xie S, Yao Y, Wu J. Chin Chem Lett, 2020, 31: 3065–3072

    Article  CAS  Google Scholar 

  18. Anderson JM, Measom ND, Murphy JA, Poole DL. Angew Chem Int Ed, 2021, 60: 24754–24769

    Article  CAS  Google Scholar 

  19. Pramanik MMD, Qian H, Xiao WJ, Chen JR. Org Chem Front, 2020, 7: 2531–2537

    Article  CAS  Google Scholar 

  20. Nied D, Breher F. Chem Soc Rev, 2011, 40: 3455–3466

    Article  CAS  PubMed  Google Scholar 

  21. For selected examples, see: (a) Gianatassio R, Lopchuk JM, Wang J, Pan CM, Malins LR, Prieto L, Brandt TA, Collins MR, Gallego GM, Sach NW, Spangler JE, Zhu H, Zhu J, Baran PS. Science, 2016, 351: 241–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kanazawa J, Maeda K, Uchiyama M. J Am Chem Soc, 2017, 139: 17791–17794

    Article  CAS  PubMed  Google Scholar 

  23. Caputo DFJ, Arroniz C, Dürr AB, Mousseau JJ, Stepan AF, Mansfield SJ, Anderson EA. Chem Sci, 2018, 9: 5295–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shelp RA, Walsh PJ. Angew Chem Int Ed, 2018, 57: 15857–15861

    Article  CAS  Google Scholar 

  25. Nugent J, Arroniz C, Shire BR, Sterling AJ, Pickford HD, Wong MLJ, Mansfield SJ, Caputo DFJ, Owen B, Mousseau JJ, Duarte F, Anderson EA. ACS Catal, 2019, 9: 9568–9574

    Article  CAS  Google Scholar 

  26. Hughes JME, Scarlata DA, Chen ACY, Burch JD, Gleason JL. Org Lett, 2019, 21: 6800–6804

    Article  CAS  PubMed  Google Scholar 

  27. Trongsiriwat N, Pu Y, Nieves-Quinones Y, Shelp RA, Kozlowski MC, Walsh PJ. Angew Chem Int Ed, 2019, 58: 13416–13420

    Article  CAS  Google Scholar 

  28. Kondo M, Kanazawa J, Ichikawa T, Shimokawa T, Nagashima Y, Miyamoto K, Uchiyama M. Angew Chem Int Ed, 2020, 59: 1970–1974

    Article  CAS  Google Scholar 

  29. Zhang X, Smith RT, Le C, McCarver SJ, Shireman BT, Carruthers NI, MacMillan DWC. Nature, 2020, 580: 220–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim JH, Ruffoni A, Al-Faiyz YSS, Sheikh NS, Leonori D. Angew Chem Int Ed, 2020, 59: 8225–8231

    Article  CAS  Google Scholar 

  31. Shin S, Lee S, Choi W, Kim N, Hong S. Angew Chem Int Ed, 2021, 60: 7873–7879

    Article  CAS  Google Scholar 

  32. Wong MLJ, Sterling AJ, Mousseau JJ, Duarte F, Anderson EA. Nat Commun, 2021, 12: 1644–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu Z, Xu Y, Liu J, Wu X, Zhu C. Sci China Chem, 2020, 63: 1025–1029

    Article  CAS  Google Scholar 

  34. Huang W, Keess S, Molander GA. J Am Chem Soc, 2022, 144: 12961–12969

    Article  CAS  PubMed  Google Scholar 

  35. Yu IF, Manske JL, Diéguez-Vázquez A, Misale A, Pashenko AE, Mykhailiuk PK, Ryabukhin SV, Volochnyuk DM, Hartwig JF. Nat Chem, 2023, 15: 685–693

    Article  CAS  PubMed  Google Scholar 

  36. Huang W, Keess S, Molander GA. Angew Chem Int Ed, 2023, 62: e202302223

    Article  CAS  Google Scholar 

  37. Alvarez EM, Bai Z, Pandit S, Frank N, Torkowski L, Ritter T. Nat Synth, 2023, 2: 548–556

    Article  Google Scholar 

  38. For recent reviews, see: (a) Magre M, Ni S, Cornella J. Angew Chem Int Ed, 2022, 61: e202200904

    Article  CAS  Google Scholar 

  39. Haufe G. Tetrahedron, 2022, 109: 132656–132692

    Article  CAS  Google Scholar 

  40. Kraemer Y, Bergman EN, Togni A, Pitts CR. Angew Chem Int Ed, 2022, 61: e202205088

    Article  CAS  Google Scholar 

  41. Popek L, Nguyen TM, Blanchard N, Cahard D, Bizet V. Tetrahedron, 2022, 117–118: 132814

    Article  Google Scholar 

  42. Case JR, Ray NH, Roberts HL. J Chem Soc, 1961, 2066

  43. Case JR, Ray NH, Roberts HL. J Chem Soc, 1961, 2070

  44. Aït-Mohand S, Dolbier WR. Org Lett, 2002, 4: 3013–3015

    Article  PubMed  Google Scholar 

  45. Shou J, Xu X, Qing F. Angew Chem Int Ed, 2021, 60: 15271–15275

    Article  CAS  Google Scholar 

  46. Birepinte M, Champagne PA, Paquin J. Angew Chem Intl Edit, 2022, 61: e202112575

    Article  CAS  Google Scholar 

  47. Shou J, Qing F. Angew Chem Int Ed, 2022, 61: e202208860

    Article  CAS  Google Scholar 

  48. Shou JY, Xu XH, Qing FL. J Fluorine Chem, 2022, 261–262: 110018

    Article  Google Scholar 

  49. Gilbert A, Birepinte M, Paquin JF. J Fluorine Chem, 2021, 243: 109734–109743

    Article  CAS  Google Scholar 

  50. Gilbert A, Paquin JF. J Fluorine Chem, 2019, 221: 70–74

    Article  CAS  Google Scholar 

  51. Kraemer Y, Ghiazza C, Ragan AN, Ni S, Lutz S, Neumann EK, Fettinger JC, Nöthling N, Goddard R, Cornella J, Pitts CR. Angew Chem Int Ed, 2022, 61: e202211892

    Article  CAS  Google Scholar 

  52. Kaszynski P, McMurdie ND, Michl J. J Org Chem, 1991, 56: 307–316

    Article  CAS  Google Scholar 

  53. Nugent J, Shire BR, Caputo DFJ, Pickford HD, Nightingale F, Houlsby ITT, Mousseau JJ, Anderson EA. Angew Chem Int Ed, 2020, 59: 11866–11870

    Article  CAS  Google Scholar 

  54. Pickford HD, Nugent J, Owen B, Mousseau JJ, Smith RC, Anderson EA. J Am Chem Soc, 2021, 143: 9729–9736

    Article  CAS  PubMed  Google Scholar 

  55. Yen-Pon E, Li L, Levitre G, Majhi J, McClain EJ, Voight EA, Crane EA, Molander GA. J Am Chem Soc, 2022, 144: 12184–12191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hutchinson J. J Fluorine Chem, 1974, 3: 429–432

    Article  Google Scholar 

  57. Deposition Number 2255639 (for 1a) contains the supplementary crystallographic data for this paper These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service

  58. Pickford HD, Ripenko V, McNamee RE, Holovchuk S, Thompson AL, Smith RC, Mykhailiuk PK, Anderson EA. Angew Chem Int Ed, 2023, 62: e202213508

    Article  CAS  Google Scholar 

  59. Livesley S, Trueman B, Robertson CM, Goundry WRF, Morris JA, Aïssa C. Org Lett, 2022, 24: 7015–7020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goh YL, Tam EKW, Bernardo PH, Cheong CB, Johannes CW, William AD, Adsool VA. Org Lett, 2014, 16: 1884–1887

    Article  CAS  PubMed  Google Scholar 

  61. Zhao X, Shou JY, Newton JJ, Qing FL. Org Lett, 2022, 24: 8412–8416

    Article  CAS  PubMed  Google Scholar 

  62. Kopping B, Chatgilialoglu C, Zehnder M, Giese B. J Org Chem, 1992, 57: 3994–4000

    Article  CAS  Google Scholar 

  63. Semmler K, Szeimies G, Belzner J. J Am Chem Soc, 1985, 107: 6410–6411

    Article  CAS  Google Scholar 

  64. Wiberg KB, Waddell ST. J Am Chem Soc, 1990, 112: 2194–2216

    Article  CAS  Google Scholar 

  65. Bär RM, Kirschner S, Nieger M, Bräse S. Chem Eur J, 2018, 24: 1373–1382

    Article  PubMed  Google Scholar 

  66. Bär RM, Heinrich G, Nieger M, Fuhr O, Bräse S. Beilstein J Org Chem, 2019, 15: 1172–1180

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sivaguru P, Bi X. Sci China Chem, 2021, 64: 1614–1629

    Article  CAS  Google Scholar 

  68. Kucher H, Wenzel JO, Rombach D, ChemRxiv, 2022, doi:https://doi.org/10.26434/chemrxiv-2022-01jhn

  69. Popek L, Cabrera-Trujillo JJ, Debrauwer V, Blanchard N, Miqueu K, Bizet V. Angew Chem Int Ed, 2023, 62: e202300685

    Article  CAS  Google Scholar 

  70. Bao ZP, Zhang Y, Wang LC, Wu XF. Sci China Chem, 2023, 66: 139–146

    Article  CAS  Google Scholar 

  71. Smith BR, Eastman CM, Njardarson JT. J Med Chem, 2014, 57: 9764–9773

    Article  CAS  PubMed  Google Scholar 

  72. Deposition Number 2255640 (for 6h) contains the supplementary crystallographic data for this paper These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service

  73. For selected examples of the reaction of disulfides in the presence of copper, see: (a) Green KA, Hoover JM. ACS Catal, 2019, 10: 1769–1782

    Article  Google Scholar 

  74. Xu W, Hei YY, Song JL, Zhan XC, Zhang XG, Deng CL. Synthesis, 2019, 51: 545–551

    Article  CAS  Google Scholar 

  75. Wang Y, Deng J, Chen J, Cao F, Hou Y, Yang Y, Deng X, Yang J, Wu L, Shao X, Shi T, Wang Z. ACS Catal, 2020, 10: 2707–2712

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21991121) and the National Key Research and Development Program of China (2021YFF0701700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Ling Qing.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Shou, JY. & Qing, FL. Iodopentafluorosulfanylation of [1.1.1]propellane and further functionalizations. Sci. China Chem. 66, 2871–2877 (2023). https://doi.org/10.1007/s11426-023-1715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1715-2

Navigation